摘自:https://blog.csdn.net/qq_35644234/article/details/60578189
《图论算法》
1、拓扑排序的介绍
对一个有向无环图(Directed Acyclic Graph简称DAG)G进行拓扑排序,是将G中所有顶点排成一个线性序列,使得图中任意一对顶点u和v,若边(u,v)∈E(G),则u在线性序列中出现在v之前。
拓扑排序对应施工的流程图具有特别重要的作用,它可以决定哪些子工程必须要先执行,哪些子工程要在某些工程执行后才可以执行。为了形象地反映出整个工程中各个子工程(活动)之间的先后关系,可用一个有向图来表示,图中的顶点代表活动(子工程),图中的有向边代表活动的先后关系,即有向边的起点的活动是终点活动的前序活动,只有当起点活动完成之后,其终点活动才能进行。
通常,我们把这种顶点表示活动、边表示活动间先后关系的有向图称做顶点活动网(Activity On Vertex network),简称AOV网。
在AOV网络中,如果存在有向边<u,v>则活动u必须在活动v之前进行,则称u是v的直接前驱(Immediate Predecessor),v是u的直接后继(Immediate Successor)。如果存在<u,u1,u2,u3,u4,u5...un,v>则称u是v的前驱,v是u的后继。
这种前驱和后继具有传递性,例如v2是v1的前驱,v3是v2的前驱,同样v3也是v1的前驱。另外这种活动不能将自己作为自己的前驱或者后继,这种特性是反自反性质。
一个AOV网应该是一个有向无环图,即不应该带有回路,因为若带有回路,则回路上的所有活动都无法进行(对于数据流来说就是死循环)。在AOV网中,若不存在回路,则所有活动可排列成一个线性序列,使得每个活动的所有前驱活动都排在该活动的前面,我们把此序列叫做拓扑序列(Topological order),由AOV网构造拓扑序列的过程叫做拓扑排序(Topological sort)。AOV网的拓扑序列不是唯一的,满足上述定义的任一线性序列都称作它的拓扑序列。
2、拓扑排序的实现步骤
在有向图中选一个没有前驱的顶点并且输出
从图中删除该顶点和所有以它为尾的弧(白话就是:删除所有和它有关的边)
重复上述两步,直至所有顶点输出,或者当前图中不存在无前驱的顶点为止,后者代表我们的有向图是有环的,因此,也可以通过拓扑排序来判断一个图是否有环。
3、拓扑排序示例手动实现
如果我们有如下的一个有向无环图,我们需要对这个图的顶点进行拓扑排序,过程如下:
首先,我们发现V6和v1是没有前驱的,所以我们就随机选去一个输出,我们先输出V6,删除和V6有关的边,得到如下图结果:
然后,我们继续寻找没有前驱的顶点,发现V1没有前驱,所以输出V1,删除和V1有关的边,得到下图的结果:
然后,我们又发现V4和V3都是没有前驱的,那么我们就随机选取一个顶点输出(具体看你实现的算法和图存储结构),我们输出V4,得到如下图结果:
然后,我们输出没有前驱的顶点V3,得到如下结果:
然后,我们分别输出V5和V2,最后全部顶点输出完成,该图的一个拓扑序列为:
v6–>v1—->v4—>v3—>v5—>v2
通过邻接矩阵来实现的代码:
1 #include<cstdio> 2 #include<cstring> 3 int ans[510][510];///邻接矩阵,记录二者是否有关联 4 int n,indegree[510];///记录节点个数 5 int queue[510];///保存拓扑 6 void topsort() 7 { 8 int i,j,top,k=0; 9 for(j=0; j<n; ++j)///遍历n次 10 { 11 for(i=1; i<=n; ++i) 12 { 13 if(indegree[i]==0)///找到入度为0的节点 14 { 15 top=i; 16 break; 17 } 18 } 19 queue[k++]=top;///当前第一名入队列,也可以直接输出 20 indegree[top]=-1;///该节点的入度更新为-1,避免重复入队列 21 for(i=1; i<=n; ++i) 22 { 23 if(ans[top][i])///删除与该店关联的边 24 indegree[i]--; 25 } 26 } 27 for(i=0; i<k-1; ++i) 28 printf("%d ",queue[i]); 29 printf("%d\n",queue[n-1]); 30 } 31 32 int main() 33 { 34 int i,a,b,m; 35 while(scanf("%d%d",&n,&m)!=EOF) 36 { 37 memset(indegree,0,sizeof(indegree));///数组初始化为0 38 memset(ans,0,sizeof(ans));///数组初始化为0 39 for(i=0; i<m; ++i) 40 { 41 scanf("%d%d",&a,&b); 42 if(ans[a][b]==0) 43 { 44 ans[a][b]=1;///二者有关联 45 indegree[b]++;///记录前驱数量 46 } 47 } 48 topsort(); 49 } 50 return 0; 51 }