有问题直接评论,随时看博。
做动态规划的题思路
1、一般都是选和不选(选就是选当前值,不选就是不选当前值)
2、然后写出递归公式,然后利用递归公式写出动态规划的代码
经典题一:
红色字体代表佣金,x是时间段,1-8分别代表8个任务,每个人物都有不同的时间段,做不同任务时间段不能冲突,现在目的就是怎么选择任务才能够佣金最多
public class 动态规划1 { static int[] v= {0,5,1,8,4,6,3,2,4}; static int[] prev= {0,0,0,0,1,0,2,3,5}; /** * 递归解法 * @param k * @return */ public static int rec_opt(int k) { int max=0; if(k==0) { return 0; } if(k>=1) { int A = rec_opt(k-1);//不选 int B = v[k]+rec_opt(prev[k]);//选 max = max(A,B); } return max; } /** * 动态规划解法 * @param k * @return */ public static int dp_opt() { int[] subset = new int[v.length]; subset[0]=0; for(int i=1;i<subset.length;i++) { int A = subset[i-1];//不选 int B = v[i]+subset[prev[i]];//选 subset[i] = max(A,B); } return subset[v.length-1]; } public static int max(int a,int b) { if(a>b) { return a; } return b; } public static void main(String[] args) { int rec_opt = rec_opt(8); int dp_opt = dp_opt(); System.out.println(rec_opt); System.out.println(dp_opt); } }
经典题二:
从 1 2 4 1 7 8 3中找到不相邻相加之后最大的,不管有几个数字
public class 动态规划2 { static int[] arr = {1,2,4,1,7,8,3}; //递归解法 public static int rec_opt(int k) { //出口 if(k==0) return arr[k]; if(k==1) return max(arr[k-1],arr[k]); int A = rec_opt(k-2)+arr[k];//选 int B = rec_opt(k-1);//不选 return max(A,B); } public static int max(int a,int b) { if(a>b) { return a; } return b; } //动态规划解法 public static int dp_opt() { int[] res = new int[arr.length];//存放结果的数组 res[0]=arr[0]; res[1]=max(arr[1],arr[0]); for(int i=2;i<res.length;i++) {//处理大于1的其他结果 int A = res[i-2]+arr[i];//选 int B = res[i-1];//不选 res[i]=max(A,B); } return res[res.length-1]; } public static void main(String[] args) { System.out.println(rec_opt(arr.length-1)); System.out.println(dp_opt()); } }
经典题三:
这道题我可能说的有点不清楚,可以评论,我不定时看博客。
arr={3,34,4,12,5,2}
给定一组数据,然后再给一个值s,然后从数组随便选然后相加,使得的值刚好够给定的值,比如说:s=9,那么数组中3+4+2=9,返回true。
public class 动态规划3 { public static int[] arr = {3,34,4,12,5,2}; /** * 递归解法 * @param arr * @param k * @param s * @return */ public static boolean rec_subset(int[] arr,int k,int s) { if(s==0) return true; if(k==0) return arr[0]==s; if(arr[k]>s) return rec_subset(arr,k-1,s); boolean A = rec_subset(arr,k-1,s-arr[k]);//选 boolean B = rec_subset(arr,k-1,s);//不选 return A || B; } public static boolean dp_subset(int[] arr,int S) { boolean[][] subset = new boolean[arr.length][S+1];//创建一个二维数组,存放所有的结果 for(int i=0;i<subset.length;i++) {//第一列都是T subset[i][0]=true; } for(int i=0;i<subset[0].length;i++) {//第一行都是f subset[0][i]=false; } subset[0][arr[0]]=true;//第一行的arr[0]是true for(int i=1;i<subset.length;i++) {//从第一行开始循环 for(int s=1;s<subset[0].length;s++) {//从第一列开始循环 if(arr[i]>s) {//数组值>凑数值 subset[i][s]=subset[i-1][s];//只考虑右边的 }else { boolean A =subset[i-1][s-arr[i]];//选 boolean B =subset[i-1][s];//不选 subset[i][s]=A || B; } } } return subset[arr.length-1][S]; } public static void main(String[] args) { System.out.println(rec_subset(arr,arr.length-1,9)); System.out.println(rec_subset(arr,arr.length-1,10)); System.out.println(rec_subset(arr,arr.length-1,11)); System.out.println(rec_subset(arr,arr.length-1,12)); System.out.println(rec_subset(arr,arr.length-1,13)); System.out.println("------------------------------"); System.out.println(dp_subset(arr,9)); System.out.println(dp_subset(arr,10)); System.out.println(dp_subset(arr,11)); System.out.println(dp_subset(arr,12)); System.out.println(dp_subset(arr,13)); } }