【Alpha】Daily Scrum Meeting第一次

一、合照

885801-20171025232144238-1218523043.jpg

二、项目燃尽图

885801-20171101221955248-333486044.png

三、项目进展

885801-20171101233619748-1446011016.png

  • 1、界面设计:图形界面部分完成
  • 2、数据库设计:数据库设计基本完成
  • 3、搭建基本服务器框架
    github链接

四、明日规划

  • 1、继续完成剩下的图形界面
  • 2、Android端访问服务器登录请求实现
  • 3、开始接口文档的撰写

五、问题困难

  • 队员都缺乏开发app的经验,在完成每一步的需求的时候都要进行学习,耗时较大
  • 搭建服务器的时候遇到了困难,还好有助教姐姐的帮忙,实现了基本框架
  • 能够集中在一起讨论的时间并不多,只能通过聊天工具进行交流,比较困难
  • (陈家权)实现界面界面滑动采用了PagerSlidingTabStrip,运行后发现顶部的tab栏竟然消失了...但是可以实现滑动切换,找了好久,感觉没问题啊...最后惊奇的发现,竟然是它显示在actionbar的位置,在xml文件加上一个空的textview,将其位置往下挪,就可以看到tab栏了...(不知道为什么)

六、心得体会

  • 要有一个良好的规划才能将项目有条不紊得进行下去,每个成员的各项分工要明确。
  • 要完成一个团队项目需要每个人都参与进来,并且进行良好的沟通,才能让团队的每个成员都了解项目具体的进展过程。

转载于:https://www.cnblogs.com/linqiaona/p/7733077.html

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值