汇编优化

csdn上果然藏龙卧虎呀,今天看到一系列汇编优化的讨论贴,认真看看对指令优化、SSE2的理解会很有帮助,把链接附上:

千分求汇编优化:UInt96x96To192(...)
http://community.csdn.net/Expert/TopicView3.asp?id=5505130

擂台:超大整数高精度快速算法
http://topic.csdn.net/T/20040510/14/3049738.html

http://topic.csdn.net/T/20040721/19/3197332.html

http://community.csdn.net/Expert/topic/5650/5650085.xml?temp=.9129297

2007.10.4
GCC中SIMD指令的应用方法 http://linux.chinaunix.net/doc/program/2005-01-19/821.shtml
作者
钱浙滨,1999年从上海交通大学图像处理与模式识别研究所获得博士学位, 曾参与完成计算机视觉、正规语言和移动通信等方面的研发工作;目前他和他的团队主要从事DSP系统开发,特别是多媒体编解码算法的性能优化, 以及相关的Linux嵌入式应用;他们也提供WLAN相关的技术咨询, 欢迎访问http://embeddedcore.com进行交流。

基于MMX指令集的程序设计简介 http://blog.csdn.net/hifrog/archive/2004/02/01/21644.aspx

奔腾指令速查手册(七) http://hi.baidu.com/qq6282371/blog/item/3201372a29d78e395343c1bb.html

转载于:https://www.cnblogs.com/cutepig/archive/2007/09/17/896125.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
A:首先,需要明确泰勒展开公式: $$\sin(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!}x^{2n+1}$$ 可以通过多项式展开及递归算法来实现。 1. 通过多项式展开 首先,需要用特定的格式表示多项式 p_n(x),如 x^5 - x^3 + x,则可以表示为: ``` typedef struct Polynomial { float coefficent[degree]; //系数 } Polynomial; ``` 然后将上述泰勒展开式中的系数存储到多项式中,如下: ``` Polynomial sin_coefficients = {1, 0, -1.0/6, 0, 1.0/120, 0, -1.0/5040}; ``` 接着,对于给定的 x,计算它对应的值 sin(x),可以通过对多项式进行求值来实现: ``` float sin_value = evaluate_polynomial(sin_coefficients, x); ``` 其中,evaluate_polynomial 函数可以通过 Horner 法则来计算: ``` float evaluate_polynomial(Polynomial p, float x) { float result = 0; for (int i = degree - 1; i >= 0; i--) { result = result * x + p.coefficient[i]; } return result; } ``` 2. 递归算法 递归算法是计算 sin(x) 的另一种方法,它可以通过不断地调用自身来计算下一个项,直到计算到给定的精度为止。其中,精度 ε 定义为一个很小的值,大约是 10^-6 左右,而递归深度 d 取决于该精度。 下面是递归函数的实现: ``` float sin(float x, int d) { if (d == 0) { return x; } else { float temp = sin(x, d - 1); return temp + pow(-1, d) * pow(x, 2 * d + 1) / factorial(2 * d + 1); } } int factorial(int n) { if (n == 0) { return 1; } else { int result = 1; for (int i = 1; i <= n; i++) { result *= i; } return result; } } ``` 该函数先检查递归深度是否达到给定的值 d,如果是,则返回 x,否则递归调用自身并计算下一个项,直到达到给定的精度 ε 为止。其中,factorial 函数用于计算阶乘。 至于如何用汇编优化该函数,可以通过以下几个方面考虑: 1. 首先,可以使用替代的指令序列来完成某些操作。例如,如果需要计算乘法,则可以使用移位和加法来完成,因为乘法通常比移位和加法慢得多。 2. 另外,可以通过使用寄存器来存储临时变量,从而减少内存访问次数,从而提高性能。 3. 最后,可以考虑使用并行计算来加速计算过程。例如,在多核CPU上同时计算多个项。 总体来说,汇编语言优化能够提高程序性能,但需要在时间和空间上平衡,因为汇编代码往往比高级语言代码难以阅读和维护。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值