python复数

复数的概念
在很久以前,数学家们被下面的等式困扰。
x2=-1
这是因为任何实数(无论正负)乘以自己总会得到一个非负数。一个数怎么可以乘以自己得到一负数?没有这样的实数存在。就这样18世纪,数学家们发了一个虚拟的数i(或者j,不同的教材不同)
基于这个特殊的数(或称之为概念),数学从此有了一个新的分支。一个实数和一个虚拟组成一个复数。一个复数是一对有序浮点型(x,y),表示x+yj其中x是实数部分,y是虚数部分。
Python中的算数
虚数不能单独存在,它们总是和一个值为0.0的实数部分一起构成一个复数
表示虚数的语法:real+imagj
实数部分和虚数部分都是浮点数
虚数部分必须有j或J
下面是些得数:
64.23+1j            4.34-8.5j            0.23-8.33j            1.23e-0.45+6.5e+0.83j              -1.23-3.5j            -0.34-0j
复数中的内建属性
复数拥有数据属性,分别为该复数的实数和虚数部分。复数还有conjugate方法,调用它可以返回该复数的共轭复数对象(两头牛背上的架子称为轭,轭使两头看点牛同步行走。共轭即为按一定的规律相配的一对)

>>> aComplex =  -8.222-1.34j
>>> aComplex
(-8.222-1.34j)
>>> aComplex.real
-8.222
>>> aComplex.imag
-1.34
>>> aComplex.conjugate()
(-8.222+1.34j)

原贴地址:http://www.dataguru.cn/thread-90572-1-1.html

转载于:https://www.cnblogs.com/yflyaway/p/9182412.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值