【清华集训2014】Sum

类欧几里得算法真是厉害

计算奇数的个数即可

$$ cnt = \sum_{d = 1}^{n}{ \lfloor {d \sqrt{r}} \rfloor - 2 \lfloor \frac{\lfloor {d \sqrt{r}} \rfloor}{2} \rfloor}$$

我们实际上要计算的是

$$\sum_{d = 1}^{n}{\lfloor \frac{d(a \sqrt{r} + b)}{c} \rfloor}$$

$$x = \lfloor \frac{(a \sqrt{r} + b)}{c} \rfloor $$

$$b_1 = b - x \times c$$

$$Lim = \lfloor \frac{n(a \sqrt{r} + b_1)}{c} \rfloor$$

\begin{eqnarray} \sum_{d = 1}^{n}{\lfloor \frac{d(a \sqrt{r} + b)}{c} \rfloor}&=& x\frac{n(n + 1)}{2} + \sum_{d = 1}^{n}{\lfloor \frac{d(a \sqrt{r} + b_1)}{c} \rfloor}\nonumber\\ &=&x\frac{n(n + 1)}{2} + \sum_{d = 1}^{n} {\sum_{k = 1}^{\infty}{k <= \frac{d(a \sqrt{r} + b_1)}{c}}}\nonumber\\ &=&x\frac{n(n + 1)}{2} + \sum_{k = 1}^{Lim} {\sum_{d = 1}^{n}{d >= \frac{ck}{a \sqrt{r} + b_1}}}\nonumber\\ &=&x\frac{n(n + 1)}{2} + Lim \times n - \sum_{k = 1}^{Lim}{\lfloor \frac{k(ca\sqrt{r} - cb_1)}{a^2r - b_1^2} \rfloor}\nonumber\ \end{eqnarray}

 

转化成子问题,递归解决

复杂度的话,每次减去整数部分,相当于分子对分母做类似取摸的操作(实数貌似没有定义取摸),每次分子至少减少一半,所以时间复杂度为$O(logn)$

 

转载于:https://www.cnblogs.com/Dyzerjet/p/4452916.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值