洛谷.3792.由乃与大母神原型和偶像崇拜(线段树 数学)

题目链接

/*
平方和公式:用于求连续自然数的平方和 
∑(k=1 to n) k^2 = 1^2 + 2^2 +...+ n^2 = n^3/3 + n^2/2 + n/6
                                       = n(n+1)(2n+1)/6
                                       = C(n+2,3)+C(n+1,3)= C(n+1,3)+C(n+1,2)= C(2n+2,3)= nC(n+1,2)-C(n+1,3)
利用最小值最大值得到[l+1,r]区间平方和:r(r+1)(2r+1)*inv6 - l(l+1)(2l+1)*inv6 
inv6为%mod下6的逆元,即6^(mod-2)
注意取模 
*/
#include<cstdio>
#include<cctype>
#include<algorithm>
#define LL long long
//#define gc() getchar()
#define gc() (SS==TT&&(TT=(SS=IN)+fread(IN,1,MAXIN,stdin),SS==TT)?EOF:*SS++)
const int N=5e5+5,mod=1e9+7,MAXIN=5e6;

int n,q,Maxn,Minn;
LL inv6;
char IN[MAXIN],*SS=IN,*TT=IN;
inline int read()
{
    int now=0,f=1;register char c=gc();
    for(;!isdigit(c);c=gc()) if(c=='-') f=-1;
    for(;isdigit(c);now=now*10+c-'0',c=gc());
    return now*f;
}
struct Seg_Tree
{
    int Min[N<<2],Max[N<<2];
    LL sum[N<<2];
    inline void PushUp(int rt)
    {
        Min[rt]=std::min(Min[rt<<1],Min[rt<<1|1]);
        Max[rt]=std::max(Max[rt<<1],Max[rt<<1|1]);
        sum[rt]=(sum[rt<<1]+sum[rt<<1|1])%mod;
    }
    void Build(int l,int r,int rt)
    {
        int m=l+r>>1;
        if(l==r) {Min[rt]=Max[rt]=read(),sum[rt]=1ll*Min[rt]*Min[rt]%mod; return;}
        Build(l,m,rt<<1),Build(m+1,r,rt<<1|1);
        PushUp(rt);
    }
    void Modify(int l,int r,int rt,int p,int v)
    {
        if(l==r) {Max[rt]=Min[rt]=v,sum[rt]=1ll*v*v%mod; return;}
        int m=l+r>>1;
        if(p<=m) Modify(l,m,rt<<1,p,v);
        else Modify(m+1,r,rt<<1|1,p,v);
        PushUp(rt);
    }
    void Query(int l,int r,int rt,int L,int R)
    {
        if(L<=l && r<=R)
        {
            Maxn=std::max(Maxn,Max[rt]),Minn=std::min(Minn,Min[rt]);
            return;
        }
        int m=l+r>>1;
        if(L<=m)
            if(m<R) Query(l,m,rt<<1,L,R),Query(m+1,r,rt<<1|1,L,R);
            else Query(l,m,rt<<1,L,R);
        else Query(m+1,r,rt<<1|1,L,R);
    }
    LL Query_Sum(int l,int r,int rt,int L,int R)
    {
        if(L<=l && r<=R) return sum[rt];
        int m=l+r>>1;
        if(L<=m)
            if(m<R) return (Query_Sum(l,m,rt<<1,L,R)+Query_Sum(m+1,r,rt<<1|1,L,R))%mod;
            else return Query_Sum(l,m,rt<<1,L,R);
        else return Query_Sum(m+1,r,rt<<1|1,L,R);
    }
}t;

int Fast_Pow(int x,int p)
{
    int tmp=1;
    for(;p;p>>=1,x=1ll*x*x%mod)
        if(p&1) tmp=1ll*tmp*x%mod;
    return tmp;
}
bool Judge(int l,int r)
{
    Maxn=-mod, Minn=mod, t.Query(1,n,1,l,r);
    if(Maxn-Minn!=r-l) return 0;
    LL now=t.Query_Sum(1,n,1,l,r);
    --Minn;
    LL fact= 1ll*Maxn*(Maxn+1)%mod*(2*Maxn+1)%mod*inv6
            -1ll*Minn*(Minn+1)%mod*(2*Minn+1)%mod*inv6;
    fact=(fact%mod+mod)%mod;
//  printf("min:%d max:%d fact:%I64d now:%I64d\n",Minn+1,Maxn,fact,now);
    return now==fact;
}

int main()
{
    n=read(),q=read();
    t.Build(1,n,1);
    int opt,x,y;
    inv6=Fast_Pow(6,mod-2);
//  inv6=166666668;
    while(q--)
    {
        opt=read(),x=read(),y=read();
        if(opt==1) t.Modify(1,n,1,x,y);
        else puts(Judge(x,y)?"damushen":"yuanxing");
    }

    return 0;
}

转载于:https://www.cnblogs.com/SovietPower/p/8444282.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值