贝壳项链

本文介绍了一种算法,用于解决在给定的贝壳编号序列中查询指定区间内不同贝壳种类数量的问题。输入包括项链长度、贝壳编号序列及多个查询区间。
【题目描述】

在某一段贝壳中,询问包含了多少种不同的贝壳。

【输入描述】

第一行:一个整数N,表示项链的长度。

第二行:N个整数,表示依次表示项链中贝壳的编号(编号为0到1000000之间的整数)。

第三行:一个整数M,表示询问的个数。

接下来M行:每行两个整数,L和R(1 ≤ L ≤ R ≤ N),表示询问的区间。

【输出描述】

M行,每行一个整数,依次表示询问对应的答案。

【样例输入】

6

1 2 3 4 3 5

3

1 2

3 5

2 6

【样例输出】

2

2

4

【数据范围及提示】

N ≤ 50000,M ≤ 200000。

转载于:https://www.cnblogs.com/Ackermann/p/5709835.html

内容概要:本文详细介绍了如何使用Hugging Face Transformers库进行大模型推理,涵盖环境配置、模型下载、缓存管理、离线使用、文本生成、推理pipeline及模型量化技术。重点讲解了使用LLMs进行自回归生成的核心流程,包括token选择策略、生成参数配置(如max_new_tokens、do_sample)、填充方式(左填充的重要性)以及常见陷阱的规避方法。同时深入探讨了多种量化技术(如GPTQ、AWQ、bitsandbytes的4位/8位量化),并通过实例演示了如何加载本地模型、应用聊天模板、结合Flash Attention优化性能,并实现CPU-GPU混合卸载以应对显存不足的问题。; 适合人群:具备Python编程基础和深度学习基础知识,熟悉Transformer架构,从事NLP或大模型相关工作的研究人员、工程师和技术爱好者;尤其适合需要在资源受限环境下部署大模型的开发者。; 使用场景及目标:①掌握Hugging Face Transformers库的核心API,实现大模型的本地加载与高效推理;②理解和避免大模型生成过程中的常见问题(如输出过短、重复生成、填充错误等);③应用量化技术降低大模型内存占用,实现在消费级GPU或CPU上的部署;④构建支持批量处理和多模态任务的推理流水线。; 阅读建议:此资源理论与实践紧密结合,建议读者边阅读边动手实践,复现文中的代码示例,并尝试在不同模型和硬件环境下进行调优。重点关注生成配置、量化参数和设备映射策略,结合具体应用场景灵活调整。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值