hdu 3178 Different Division

Different Division

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 165    Accepted Submission(s): 75


Problem Description
Now we will give you a graph, there are many points in the graph. We will choose two different points arbitrarily, and connect them as a line. Please tell us that whether these points (Include the two points referred above) is on the left side of the line, or lying on the line. or on the right side of the line. For example,

There are four points in the graph: A, B, C, D. we connect C and D. Now C and D form a new line “CD”. Obviously, C and D are lying on the line “CD”. A is on the right side of CD, and B is on the left side of CD. What’s more, A is on the left side of line DC, and B is on the right side of line DC. So line “CD” and “DC” are different in this problem;
 

 

Input
The first line of input is a single integer T, indicating the number of test cases. Then exactly T test cases followed. In each case, the first line contains one integer: N, the number of points. Then N lines followed, each line contains two real numbers X, Y, indicating the coordinates of points. Then one line follows, contains two integers P1 and P2 indicate the P1th point and the P2th point in this case.
1<= T <= 100
2 <= N <= 1000
1<= P1, P2 <= N, P1 != P2
-1000 < X, Y < 1000;
 

 

Output
For each case, print N lines. According to the order of input, for each point print “Left” if this point is on the left side of line P1P2 , or ”On” if this point is lying on line P1P2 , or ”Right” if this is on the right side of line P1P2.
 

 

Sample Input
1 4 1 1 1 2 3 3 2 1 1 3
 

 

Sample Output
On Left On Right
该题用差乘来解决,这样就不会出现精度的问题了
 
 
代码:
 1 #include <cstdio>
 2 #include <iostream>
 3 
 4 using namespace std;
 5 
 6 #define N 1005
 7 #define L 0.0000001
 8 
 9 double a[N];
10 double b[N];
11 
12 int main()
13 {
14     int t;
15     scanf("%d",&t);
16     while(t--)
17     {
18         int n;
19         scanf("%d",&n);
20         int i = 0;
21         for(i = 1; i <= n; i++)
22             scanf("%lf%lf",&a[i],&b[i]);
23         int p1,p2;
24         scanf("%d%d",&p1,&p2);
25 
26         double x1 = a[p2] - a[p1];
27         double y1 = b[p2] - b[p1];
28 
29         for(i = 1; i <= n; i++)
30         {
31             double x2 = a[i] - a[p1];
32             double y2 = b[i] - b[p1];
33 
34             double sum = x1*y2 - x2*y1;
35             if(sum < -L)
36                 printf("Right\n");
37             else if(sum > L)
38                 printf("Left\n");
39             else printf("On\n");
40         }
41     }
42     return 0;
43 }

 

转载于:https://www.cnblogs.com/yyroom/archive/2013/04/06/3002758.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值