折线分割平面
Problem Description
我们看到过很多直线分割平面的题目,今天的这个题目稍微有些变化,我们要求的是n条折线分割平面的最大数目。比如,一条折线可以将平面分成两部分,两条折线最多可以将平面分成7部分,具体如下所示。
Input
输入数据的第一行是一个整数C,表示测试实例的个数,然后是C 行数据,每行包含一个整数n(0<n<=10000),表示折线的数量。
Output
对于每个测试实例,请输出平面的最大分割数,每个实例的输出占一行。
Sample Input
2
1
2
Sample Output
2
7
首先我们考虑直线的情况:
当n=1时原来的1个平面被分割成了2个;
当n=2时原来的2个平面被分割成了4个;
当n=3时原来的4个平面被分割成了7个;
也就是说F(n)=F(n-1)+n且n=0时F(0)=1;
推出公式
F(n)=(1+2+3+....+n)+F(0)=(1+n)*n/2+1;
好那我们考虑折线。这个折线可以看做两条直线相交分割成4个平面。
但是由于是折线所以每个折线会损失2个平面。
也就是
F(n)=(1+2n)*2n/2+1-2n; ——————from discuss
1 #include<iostream> 2 #include<cstdio> 3 using namespace std; 4 int main() 5 { 6 int n,T; 7 cin>>T; 8 while(T--) 9 { 10 cin>>n; 11 cout<<(2*n*n-n+1)<<endl; 12 } 13 return 0; 14 }