Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
For example, given the following triangle
[ [2], [3,4], [6,5,7], [4,1,8,3] ]
The minimum path sum from top to bottom is 11
(i.e., 2 + 3 + 5 + 1 = 11).
Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.
实现:
class Solution {
public:
int minimumTotal(vector<vector<int>>& triangle) {
int n = triangle.size();
for (int i=n-2; i >=0; i--) {
for (int j = 0; j < triangle[i].size(); j++) {
triangle[i][j] += triangle[i+1][j] < triangle[i+1][j+1] ? triangle[i+1][j] : triangle[i+1][j+1];
}
}
return triangle[0][0];
}
};