感受野

定义: 卷积神经网络每一层输出的特征图(feature map)上的像素点在原始图像上映射的区域大小。

-w360

设网络共有 N 层卷积层, 卷积核采用正方形, 记第 i 层卷积核大小为 \(size_i\), 步长为 \(stride_i\), 当我们计算 \(feature \space map\) 经过第 N 层卷积(或者池化), 输出的一个 "像素"对应的感受野时, 计算过程如下(从上到下计算, 计算最后所得值就是对应的感受野), \(field_{N}\) 表示经过第 N 层卷积之后的 feature map 上一个像素点对应的感受野(只看宽度).

\[ \begin {align*} &field_{N} = size_N \\ &\quad \quad \vdots \\ &field_{i} = (field_{i+1} - 1) \times stride_{i} + size_i \\ &\quad \quad \vdots \\ &field_{1} = (field_{2} - 1) \times stride_{1} + size_1\\ \end {align*} \]

\(field_{1}\) 即为所求感受野.

\(\color{red}{举例如下(\bf ZFNet)}\):

1182370-20180330185921615-880050579.jpg

第 8 层为最后一个 feature map 大小为 13x13 这一层, 171 为该层 3 个像素在图片的感受野大小

layersizestride计算
8th313
7th31(3-1)×1 + 3 = 5
6th31(5-1)×1 + 3 = 7
5th31(7-1)×1 + 3 = 9
4th32(9-1)×2 + 3 = 19
3rd52(19-1)×2 + 5 = 41
2nd32(41-1)×2 + 3 = 83
1st72(83-1)×2 + 2 = 171

转载于:https://www.cnblogs.com/nowgood/p/receptionfield.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值