一 模块介绍
1、什么是模块?
#常见的场景:一个模块就是一个包含了一组功能的python文件,比如spam.py,模块名为spam,可以通过import spam使用。 #在python中,模块的使用方式都是一样的,但其实细说的话,模块可以分为四个通用类别: 使用python编写的.py文件 已被编译为共享库或DLL的C或C++扩展 把一系列模块组织到一起的文件夹(注:文件夹下有一个__init__.py文件,该文件夹称之为包) 使用C编写并链接到python解释器的内置模块
2、为何要使用模块?
#1、从文件级别组织程序,更方便管理 随着程序的发展,功能越来越多,为了方便管理,我们通常将程序分成一个个的文件,这样做程序的结构更清晰,方便管理。这时我们不仅仅可以把这些文件当做脚本去执行,还可以把他们当做模块来导入到其他的模块中,实现了功能的重复利用 #2、拿来主义,提升开发效率 同样的原理,我们也可以下载别人写好的模块然后导入到自己的项目中使用,这种拿来主义,可以极大地提升我们的开发效率 #ps: 如果你退出python解释器然后重新进入,那么你之前定义的函数或者变量都将丢失,因此我们通常将程序写到文件中以便永久保存下来,需要时就通过python test.py方式去执行,此时test.py被称为脚本script。
3、以spam.py为例来介绍模块的使用:文件名spam.py,模块名spam
#spam.py print('from the spam.py') money=1000 def read1(): print('spam模块:',money) def read2(): print('spam模块') read1() def change(): global money money=0
二 使用模块之import
1、import的使用
#模块可以包含可执行的语句和函数的定义,这些语句的目的是初始化模块,它们只在模块名第一次遇到导入import语句时才执行(import语句是可以在程序中的任意位置使用的,且针对同一个模块很import多次,为了防止你重复导入,python的优化手段是:第一次导入后就将模块名加载到内存了,后续的import语句仅是对已经加载到内存中的模块对象增加了一次引用,不会重新执行模块内的语句),如下 #test.py import spam #只在第一次导入时才执行spam.py内代码,此处的显式效果是只打印一次'from the spam.py',当然其他的顶级代码也都被执行了,只不过没有显示效果. import spam import spam import spam ''' 执行结果: from the spam.py '''
ps:我们可以从sys.module中找到当前已经加载的模块,sys.module是一个字典,内部包含模块名与模块对象的映射,该字典决定了导入模块时是否需要重新导入。
2、在第一次导入模块时会做三件事,重复导入会直接引用内存中已经加载好的结果
#1.为源文件(spam模块)创建新的名称空间,在spam中定义的函数和方法若是使用到了global时访问的就是这个名称空间。 #2.在新创建的命名空间中执行模块中包含的代码,见初始导入import spam 提示:导入模块时到底执行了什么? In fact function definitions are also ‘statements’ that are ‘executed’; the execution of a module-level function definition enters the function name in the module’s global symbol table. 事实上函数定义也是“被执行”的语句,模块级别函数定义的执行将函数名放 入模块全局名称空间表,用globals()可以查看 #3.创建名字spam来引用该命名空间 这个名字和变量名没什么区别,都是‘第一类的’,且使用spam.名字的方式 可以访问spam.py文件中定义的名字,spam.名字与test.py中的名字来自 两个完全不同的地方。
3、被导入模块有独立的名称空间
每个模块都是一个独立的名称空间,定义在这个模块中的函数,把这个模块的名称空间当做全局名称空间,这样我们在编写自己的模块时,就不用担心我们定义在自己模块中全局变量会在被导入时,与使用者的全局变量冲突
复制代码 #test.py import spam money=10 print(spam.money) ''' 执行结果: from the spam.py 1000 ''' 复制代码
#test.py import spam def read1(): print('========') spam.read1() ''' 执行结果: from the spam.py spam->read1->money 1000 ''' 测试二:read1与spam.read1不冲突
#test.py import spam money=1 spam.change() print(money) ''' 执行结果: from the spam.py ''' 测试三:执行spam.change()操作的全局变量money仍然是spam中的
4、为模块名起别名
为已经导入的模块起别名的方式对编写可扩展的代码很有用
1 import spam as sm 2 print(sm.money)
有两中sql模块mysql和oracle,根据用户的输入,选择不同的sql功能
#mysql.py def sqlparse(): print('from mysql sqlparse') #oracle.py def sqlparse(): print('from oracle sqlparse') #test.py db_type=input('>>: ') if db_type == 'mysql': import mysql as db elif db_type == 'oracle': import oracle as db db.sqlparse()
假设有两个模块xmlreader.py和csvreader.py,它们都定义了函数read_data(filename):用来从文件中读取一些数据,但采用不同的输入格式。可以编写代码来选择性地挑选读取模块
if file_format == 'xml': import xmlreader as reader elif file_format == 'csv': import csvreader as reader data=reader.read_date(filename)
5、在一行导入多个模块
1 import sys,os,re
三 使用模块之from ... import...
1、from...import...的使用
1 from spam import read1,read2
2、from...import 与import的对比
#唯一的区别就是:使用from...import...则是将spam中的名字直接导入到当前的名称空间中,所以在当前名称空间中,直接使用名字就可以了、无需加前缀:spam. #from...import...的方式有好处也有坏处 好处:使用起来方便了 坏处:容易与当前执行文件中的名字冲突
验证一:当前位置直接使用read1和read2就好了,执行时,仍然以spam.py文件全局名称空间
#测试一:导入的函数read1,执行时仍然回到spam.py中寻找全局变量money #test.py from spam import read1 money=1000 read1() ''' 执行结果: from the spam.py spam->read1->money 1000 ''' #测试二:导入的函数read2,执行时需要调用read1(),仍然回到spam.py中找read1() #test.py from spam import read2 def read1(): print('==========') read2() ''' 执行结果: from the spam.py spam->read2 calling read spam->read1->money 1000 '''
验证二:如果当前有重名read1或者read2,那么会有覆盖效果。
#测试三:导入的函数read1,被当前位置定义的read1覆盖掉了 #test.py from spam import read1 def read1(): print('==========') read1() ''' 执行结果: from the spam.py ========== '''
验证三:导入的方法在执行时,始终是以源文件为准的
from spam import money,read1 money=100 #将当前位置的名字money绑定到了100 print(money) #打印当前的名字 read1() #读取spam.py中的名字money,仍然为1000 ''' from the spam.py spam->read1->money 1000 '''
3、也支持as
1 from spam import read1 as read
4、一行导入多个名字
from spam import read1,read2,money
5、from...import *
#from spam import * 把spam中所有的不是以下划线(_)开头的名字都导入到当前位置
#大部分情况下我们的python程序不应该使用这种导入方式,因为*你不知道你导入什么名字,很有可能会覆盖掉你之前已经定义的名字。而且可读性极其的差,在交互式环境中导入时没有问题。
from spam import * #将模块spam中所有的名字都导入到当前名称空间 print(money) print(read1) print(read2) print(change) ''' 执行结果: from the spam.py <function read1 at 0x1012e8158> <function read2 at 0x1012e81e0> <function change at 0x1012e8268> '''
可以使用__all__来控制*(用来发布新版本),在spam.py中新增一行
__all__=['money','read1'] #这样在另外一个文件中用from spam import *就这能导入列表中规定的两个名字
四 模块的重载 (了解)
考虑到性能的原因,每个模块只被导入一次,放入字典sys.module中,如果你改变了模块的内容,你必须重启程序,python不支持重新加载或卸载之前导入的模块,
有的同学可能会想到直接从sys.module中删除一个模块不就可以卸载了吗,注意了,你删了sys.module中的模块对象仍然可能被其他程序的组件所引用,因而不会被清楚。
特别的对于我们引用了这个模块中的一个类,用这个类产生了很多对象,因而这些对象都有关于这个模块的引用。
如果只是你想交互测试的一个模块,使用 importlib.reload(), e.g. import importlib; importlib.reload(modulename),这只能用于测试环境。
def func1(): print('func1')
1 import time,importlib 2 import aa 3 4 time.sleep(20) 5 # importlib.reload(aa) 6 aa.func1()
五 py文件区分两种用途:模块与脚本
#编写好的一个python文件可以有两种用途:
一:脚本,一个文件就是整个程序,用来被执行
二:模块,文件中存放着一堆功能,用来被导入使用
#python为我们内置了全局变量__name__,
当文件被当做脚本执行时:__name__ 等于'__main__'
当文件被当做模块导入时:__name__等于模块名
#作用:用来控制.py文件在不同的应用场景下执行不同的逻辑
if __name__ == '__main__':
#fib.py def fib(n): # write Fibonacci series up to n a, b = 0, 1 while b < n: print(b, end=' ') a, b = b, a+b print() def fib2(n): # return Fibonacci series up to n result = [] a, b = 0, 1 while b < n: result.append(b) a, b = b, a+b return result if __name__ == "__main__": import sys fib(int(sys.argv[1])) #执行:python fib.py <arguments> python fib.py 50 #在命令行
六 模块搜索路径
模块的查找顺序是:内存中已经加载的模块->内置模块->sys.path路径中包含的模块
#官网链接:https://docs.python.org/3/tutorial/modules.html#the-module-search-path 搜索路径: 当一个命名为spam的模块被导入时 解释器首先会从内建模块中寻找该名字 找不到,则去sys.path中找该名字 sys.path从以下位置初始化 执行文件所在的当前目录 PTYHONPATH(包含一系列目录名,与shell变量PATH语法一样) 依赖安装时默认指定的 注意:在支持软连接的文件系统中,执行脚本所在的目录是在软连接之后被计算的,换句话说,包含软连接的目录不会被添加到模块的搜索路径中 在初始化后,我们也可以在python程序中修改sys.path,执行文件所在的路径默认是sys.path的第一个目录,在所有标准库路径的前面。这意味着,当前目录是优先于标准库目录的,需要强调的是:我们自定义的模块名不要跟python标准库的模块名重复,除非你是故意的,傻叉。
七 编译python文件(了解)
为了提高加载模块的速度,强调强调强调:提高的是加载速度而绝非运行速度。python解释器会在__pycache__目录中下缓存每个模块编译后的版本,格式为:module.version.pyc。通常会包含python的版本号。例如,在CPython3.3版本下,spam.py模块会被缓存成__pycache__/spam.cpython-33.pyc。这种命名规范保证了编译后的结果多版本共存。
Python检查源文件的修改时间与编译的版本进行对比,如果过期就需要重新编译。这是完全自动的过程。并且编译的模块是平台独立的,所以相同的库可以在不同的架构的系统之间共享,即pyc使一种跨平台的字节码,类似于JAVA火.NET,是由python虚拟机来执行的,但是pyc的内容跟python的版本相关,不同的版本编译后的pyc文件不同,2.5编译的pyc文件不能到3.5上执行,并且pyc文件是可以反编译的,因而它的出现仅仅是用来提升模块的加载速度的,不是用来加密的。
#python解释器在以下两种情况下不检测缓存 #1 如果是在命令行中被直接导入模块,则按照这种方式,每次导入都会重新编译,并且不会存储编译后的结果(python3.3以前的版本应该是这样) python -m spam.py #2 如果源文件不存在,那么缓存的结果也不会被使用,如果想在没有源文件的情况下来使用编译后的结果,则编译后的结果必须在源目录下 sh-3.2# ls __pycache__ spam.py sh-3.2# rm -rf spam.py sh-3.2# mv __pycache__/spam.cpython-36.pyc ./spam.pyc sh-3.2# python3 spam.pyc spam #提示: 1.模块名区分大小写,foo.py与FOO.py代表的是两个模块 2.你可以使用-O或者-OO转换python命令来减少编译模块的大小 -O转换会帮你去掉assert语句 -OO转换会帮你去掉assert语句和__doc__文档字符串 由于一些程序可能依赖于assert语句或文档字符串,你应该在在确认需要 的情况下使用这些选项。 3.在速度上从.pyc文件中读指令来执行不会比从.py文件中读指令执行更快,只有在模块被加载时,.pyc文件才是更快的 4.只有使用import语句是才将文件自动编译为.pyc文件,在命令行或标准输入中指定运行脚本则不会生成这类文件,因而我们可以使用compieall模块为一个目录中的所有模块创建.pyc文件 模块可以作为一个脚本(使用python -m compileall)编译Python源 python -m compileall /module_directory 递归着编译 如果使用python -O -m compileall /module_directory -l则只一层 命令行里使用compile()函数时,自动使用python -O -m compileall 详见:https://docs.python.org/3/library/compileall.html#module-compileall 详细的
八 包介绍
1、什么是包?
#官网解释 Packages are a way of structuring Python’s module namespace by using “dotted module names” 包是一种通过使用‘.模块名’来组织python模块名称空间的方式。 #具体的:包就是一个包含有__init__.py文件的文件夹,所以其实我们创建包的目的就是为了用文件夹将文件/模块组织起来 #需要强调的是: 1. 在python3中,即使包下没有__init__.py文件,import 包仍然不会报错,而在python2中,包下一定要有该文件,否则import 包报错 2. 创建包的目的不是为了运行,而是被导入使用,记住,包只是模块的一种形式而已,包的本质就是一种模块
3、注意事项
#1.关于包相关的导入语句也分为import和from ... import ...两种,但是无论哪种,无论在什么位置,在导入时都必须遵循一个原则:凡是在导入时带点的,点的左边都必须是一个包,否则非法。可以带有一连串的点,如item.subitem.subsubitem,但都必须遵循这个原则。但对于导入后,在使用时就没有这种限制了,点的左边可以是包,模块,函数,类(它们都可以用点的方式调用自己的属性)。 #2、import导入文件时,产生名称空间中的名字来源于文件,import 包,产生的名称空间的名字同样来源于文件,即包下的__init__.py,导入包本质就是在导入该文件 #3、包A和包B下有同名模块也不会冲突,如A.a与B.a来自俩个命名空间
4、上课流程
实验一 准备: 执行文件为test.py,内容 #test.py import aaa 同级目录下创建目录aaa,然后自建空__init__.py(或者干脆建包) 需求:验证导入包就是在导入包下的__init__.py 解决: 先执行看结果 再在__init__.py添加打印信息后,重新执行 2、实验二 准备:基于上面的结果 需求: aaa.x aaa.y 解决:在__init__.py中定义名字x和y 3、实验三 准备:在aaa下建立m1.py和m2.py #m1.py def f1(): print('from 1') #m2.py def f2(): print('from 2') 需求: aaa.m1 #进而aaa.m1.func1() aaa.m2 #进而aaa.m2.func2() 解决:在__init__.py中定义名字m1和m2,先定义一个普通变量,再引出如何导入模块名,强调:环境变量是以执行文件为准 4、实验四 准备:在aaa下新建包bbb 需求: aaa.bbb 解决:在aaa的__init__.py内导入名字bbb 5、实验五 准备: 在bbb下建立模块m3.py #m3.py def f3(): print('from 3') 需求: aaa.bbb.m3 #进而aaa.bbb.m3.f3() 解决:是bbb下的名字m3,因而要在bbb的__init__.py文件中导入名字m3,from aaa.bbb import m3 6、实验六 准备:基于上面的结果 需求: aaa.m1() aaa.m2() aaa.m3() 进而实现 aaa.f1() aaa.f2() aaa.f3() 先用绝对导入,再用相对导入 解决:在aaa的__init__.py中拿到名字m1、m2、m3 包内模块直接的相对导入,强调包的本质:包内的模块是用来被导入的,而不是被执行的 用户无法区分模块是文件还是一个包,我们定义包是为了方便开发者维护 7、实验七 将包整理当做一个模块,移动到别的目录下,操作sys.path
九 包的使用
1、示范文件
glance/ #Top-level package ├── __init__.py #Initialize the glance package ├── api #Subpackage for api │ ├── __init__.py │ ├── policy.py │ └── versions.py ├── cmd #Subpackage for cmd │ ├── __init__.py │ └── manage.py └── db #Subpackage for db ├── __init__.py └── models.py
#文件内容 #policy.py def get(): print('from policy.py') #versions.py def create_resource(conf): print('from version.py: ',conf) #manage.py def main(): print('from manage.py') #models.py def register_models(engine): print('from models.py: ',engine) 包所包含的文件内容 文件内容
执行文件与示范文件在同级目录下
2、包的使用之import
1 import glance.db.models 2 glance.db.models.register_models('mysql')
单独导入包名称时不会导入包中所有包含的所有子模块,如
#在与glance同级的test.py中 import glance glance.cmd.manage.main() ''' 执行结果: AttributeError: module 'glance' has no attribute 'cmd' '''
解决方法:
1 #glance/__init__.py 2 from . import cmd 3 4 #glance/cmd/__init__.py 5 from . import manage
执行:
1 #在于glance同级的test.py中 2 import glance 3 glance.cmd.manage.main()
3、包的使用之from ... import ...
需要注意的是from后import导入的模块,必须是明确的一个不能带点,否则会有语法错误,如:from a import b.c是错误语法
1 from glance.db import models 2 models.register_models('mysql') 3 4 from glance.db.models import register_models 5 register_models('mysql')
4、from glance.api import *
在讲模块时,我们已经讨论过了从一个模块内导入所有*,此处我们研究从一个包导入所有*。
此处是想从包api中导入所有,实际上该语句只会导入包api下__init__.py文件中定义的名字,我们可以在这个文件中定义__all___:
1 #在__init__.py中定义 2 x=10 3 4 def func(): 5 print('from api.__init.py') 6 7 __all__=['x','func','policy']
此时我们在于glance同级的文件中执行from glance.api import *就导入__all__中的内容(versions仍然不能导入)。
练习:
#执行文件中的使用效果如下,请处理好包的导入 from glance import * get() create_resource('a.conf') main() register_models('mysql')
#在glance.__init__.py中 from .api.policy import get from .api.versions import create_resource from .cmd.manage import main from .db.models import register_models __all__=['get','create_resource','main','register_models']
5、绝对导入和相对导入
我们的最顶级包glance是写给别人用的,然后在glance包内部也会有彼此之间互相导入的需求,这时候就有绝对导入和相对导入两种方式:
绝对导入:以glance作为起始
相对导入:用.或者..的方式最为起始(只能在一个包中使用,不能用于不同目录内)
例如:我们在glance/api/version.py中想要导入glance/cmd/manage.py
1 在glance/api/version.py 2 3 #绝对导入 4 from glance.cmd import manage 5 manage.main() 6 7 #相对导入 8 from ..cmd import manage 9 manage.main()
测试结果:注意一定要在于glance同级的文件中测试
1 from glance.api import versions
6、包以及包所包含的模块都是用来被导入的,而不是被直接执行的。而环境变量都是以执行文件为准的
比如我们想在glance/api/versions.py中导入glance/api/policy.py,有的同学一抽这俩模块是在同一个目录下,十分开心的就去做了,它直接这么做
1 #在version.py中 2 3 import policy 4 policy.get()
没错,我们单独运行version.py是一点问题没有的,运行version.py的路径搜索就是从当前路径开始的,于是在导入policy时能在当前目录下找到
但是你想啊,你子包中的模块version.py极有可能是被一个glance包同一级别的其他文件导入,比如我们在于glance同级下的一个test.py文件中导入version.py,如下
1 from glance.api import versions 2 3 ''' 4 执行结果: 5 ImportError: No module named 'policy' 6 ''' 7 8 ''' 9 分析: 10 此时我们导入versions在versions.py中执行 11 import policy需要找从sys.path也就是从当前目录找policy.py, 12 这必然是找不到的 13 '''
7、包的分发(了解)
https://packaging.python.org/distributing/
十 软件开发规范
#===============>star.py import sys,os BASE_DIR=os.path.dirname(os.path.dirname(os.path.abspath(__file__))) sys.path.append(BASE_DIR) from core import src if __name__ == '__main__': src.run() #===============>settings.py import os BASE_DIR=os.path.dirname(os.path.dirname(os.path.abspath(__file__))) DB_PATH=os.path.join(BASE_DIR,'db','db.json') LOG_PATH=os.path.join(BASE_DIR,'log','access.log') LOGIN_TIMEOUT=5 """ logging配置 """ # 定义三种日志输出格式 standard_format = '[%(asctime)s][%(threadName)s:%(thread)d][task_id:%(name)s][%(filename)s:%(lineno)d]' \ '[%(levelname)s][%(message)s]' #其中name为getlogger指定的名字 simple_format = '[%(levelname)s][%(asctime)s][%(filename)s:%(lineno)d]%(message)s' id_simple_format = '[%(levelname)s][%(asctime)s] %(message)s' # log配置字典 LOGGING_DIC = { 'version': 1, 'disable_existing_loggers': False, 'formatters': { 'standard': { 'format': standard_format }, 'simple': { 'format': simple_format }, }, 'filters': {}, 'handlers': { #打印到终端的日志 'console': { 'level': 'DEBUG', 'class': 'logging.StreamHandler', # 打印到屏幕 'formatter': 'simple' }, #打印到文件的日志,收集info及以上的日志 'default': { 'level': 'DEBUG', 'class': 'logging.handlers.RotatingFileHandler', # 保存到文件 'formatter': 'standard', 'filename': LOG_PATH, # 日志文件 'maxBytes': 1024*1024*5, # 日志大小 5M 'backupCount': 5, 'encoding': 'utf-8', # 日志文件的编码,再也不用担心中文log乱码了 }, }, 'loggers': { #logging.getLogger(__name__)拿到的logger配置 '': { 'handlers': ['default', 'console'], # 这里把上面定义的两个handler都加上,即log数据既写入文件又打印到屏幕 'level': 'DEBUG', 'propagate': True, # 向上(更高level的logger)传递 }, }, } #===============>src.py from conf import settings from lib import common import time logger=common.get_logger(__name__) current_user={'user':None,'login_time':None,'timeout':int(settings.LOGIN_TIMEOUT)} def auth(func): def wrapper(*args,**kwargs): if current_user['user']: interval=time.time()-current_user['login_time'] if interval < current_user['timeout']: return func(*args,**kwargs) name = input('name>>: ') password = input('password>>: ') db=common.conn_db() if db.get(name): if password == db.get(name).get('password'): logger.info('登录成功') current_user['user']=name current_user['login_time']=time.time() return func(*args,**kwargs) else: logger.error('用户名不存在') return wrapper @auth def buy(): print('buy...') @auth def run(): print(''' 购物 查看余额 转账 ''') while True: choice = input('>>: ').strip() if not choice:continue if choice == '1': buy() #===============>db.json {"egon": {"password": "123", "money": 3000}, "alex": {"password": "alex3714", "money": 30000}, "wsb": {"password": "3714", "money": 20000}} #===============>common.py from conf import settings import logging import logging.config import json def get_logger(name): logging.config.dictConfig(settings.LOGGING_DIC) # 导入上面定义的logging配置 logger = logging.getLogger(name) # 生成一个log实例 return logger def conn_db(): db_path=settings.DB_PATH dic=json.load(open(db_path,'r',encoding='utf-8')) return dic #===============>access.log [2017-10-21 19:08:20,285][MainThread:10900][task_id:core.src][src.py:19][INFO][登录成功] [2017-10-21 19:08:32,206][MainThread:10900][task_id:core.src][src.py:19][INFO][登录成功] [2017-10-21 19:08:37,166][MainThread:10900][task_id:core.src][src.py:24][ERROR][用户名不存在] [2017-10-21 19:08:39,535][MainThread:10900][task_id:core.src][src.py:24][ERROR][用户名不存在] [2017-10-21 19:08:40,797][MainThread:10900][task_id:core.src][src.py:24][ERROR][用户名不存在] [2017-10-21 19:08:47,093][MainThread:10900][task_id:core.src][src.py:24][ERROR][用户名不存在] [2017-10-21 19:09:01,997][MainThread:10900][task_id:core.src][src.py:19][INFO][登录成功] [2017-10-21 19:09:05,781][MainThread:10900][task_id:core.src][src.py:24][ERROR][用户名不存在] [2017-10-21 19:09:29,878][MainThread:8812][task_id:core.src][src.py:19][INFO][登录成功] [2017-10-21 19:09:54,117][MainThread:9884][task_id:core.src][src.py:19][INFO][登录成功]