洛谷 P2158 [SDOI2008]仪仗队

题意简述

给定一个n,求gcd(x, y) = 1(x, y <= n)的(x, y)个数

题解思路

欧拉函数,
则gcd(x, y) = 1(x <= y <= n)的个数 ans = φ(1) + φ(2) +...+ φ(n - 1)
最终答案为ans * 2 + 1;

代码

#include <cstdio>
using namespace std;
int n, ans;
int phi[41000];
int main()
{
    scanf("%d", &n);
    for (register int i = 1; i <= n; ++i) phi[i] = i;
    for (register int i = 2; i <= n; ++i)
        if (phi[i] == i)
            for (register int j = 1; i * j <= n; ++j)
                phi[i * j] = phi[i * j] / i * (i - 1);
    if (n == 1) printf("%d\n", 0);
    else
    {
        for (register int i = 1; i < n; ++i) ans += phi[i];
        printf("%d\n", ans * 2 + 1);
    }
}

转载于:https://www.cnblogs.com/xuyixuan/p/9600248.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值