题意简述
给定一个n,求gcd(x, y) = 1(x, y <= n)的(x, y)个数
题解思路
欧拉函数,
则gcd(x, y) = 1(x <= y <= n)的个数 ans = φ(1) + φ(2) +...+ φ(n - 1)
最终答案为ans * 2 + 1;
代码
#include <cstdio>
using namespace std;
int n, ans;
int phi[41000];
int main()
{
scanf("%d", &n);
for (register int i = 1; i <= n; ++i) phi[i] = i;
for (register int i = 2; i <= n; ++i)
if (phi[i] == i)
for (register int j = 1; i * j <= n; ++j)
phi[i * j] = phi[i * j] / i * (i - 1);
if (n == 1) printf("%d\n", 0);
else
{
for (register int i = 1; i < n; ++i) ans += phi[i];
printf("%d\n", ans * 2 + 1);
}
}