一个常见数据库操作错误的分析(一)

[错误代码]

Microsoft OLE DB Provider for ODBC Drivers 错误 '80004005'

[Microsoft][ODBC 驱动程序管理器] 未发现数据源名称并且未指定默认驱动程序

[分析]

这个错误在使用ASP或者VB链接数据库(其他语言也是可能出现这种错误的)时出现的。
我运行VB代码时发现同样的程序代码在有的机器上会报错有的不报错,又是运行报错有时又不报错。

[在ASP中可能的解决方法]

使用了ODBC连接数据库,服务器上没有配置ODBC数据库,改用OLEDB的标准调用方式:
"Driver={SQL Server};Database=dbname;Server=srv;Uid=user;Pwd=pd"可以解决

那在VB中如何解决呢?需要进一步分析了……

转载于:https://www.cnblogs.com/ainima/archive/2006/02/18/6331604.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Python作为一种高级编程语言,可以让我们轻松地读取和处理数据库中的数据,同时也可以进行各种数据清洗工作。 在Python中,我们可以通过安装数据库驱动程序来读取,连接和操作数据库。在连接数据库之后,可以使用SQL语句进行数据查询和操作。例如,如果我们需要查询某个表的所有数据,可以使用SELECT语句。 在读取数据后,我们需要对数据进行清洗。一般来说,数据清洗包括以下步骤: 1. 去除重复值和空值:重复的数据可能会产生误导,空值也会导致分析结果出现偏差。 2. 纠正格式错误:数据中常常包含一些错位或格式错误的内容,需要对其进行纠正。 3. 数据类型转换:有些数据在数据库中存储时并不是我们需要的类型,例如文本或日期型数据可能需要被转换为数字型。 4. 数据标准化:如果不同来源的数据格式不一致,需要进行标准化处理。 5. 数据整合:对于来自多个数据源的数据,需要进行整合操作,使其成为一个完整的数据集合。 以上是常见的数据清洗步骤,但具体步骤还会根据数据类型和数据质量而有所不同。 在Python中,有许多数据处理和清洗工具可供选择。例如pandas库提供了丰富的数据处理和清洗函数,numpy库提供了高效的数值处理函数,而scikit-learn库则提供了机器学习算法。 总的来说,使用Python进行数据库数据读取和清洗不仅可以提升数据处理效率,还可以使数据分析结果更加准确和可靠。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值