CF891E [数学题]

1.答案=初始乘积-最终乘积的期望。然后直接dp+ntt是O(nklogk)

2.考虑展开式子ans=sum(a[i]-b[i]),大概感受一下未知数个数相同的项系数相同,问题在于如何求系数

3.没思路。题解的做法是把状态用子集表示,这样就很好转移。

F(s,i)表示s集合在i次操作后乘积的期望。

F(s,i)=F(s,i-1)-sigma(F(s-2^j,i-1)/n, j belong to s) //其实这并没有用到1中提到的性质,转移也很显然。

边界是F(s,0)=sum(ai, i belong to s),要求F(2^n-1,k)。

把式子递归地展开两三层,再考虑直接求每个F(s,0)对答案的贡献(系数),是A(k,n-|s|)/(n^(n-|s|)),而这也正是前面所说的只有n种的系数。//大概可以这样理解,k步里选n-|s|步放1..n-|s|中的数,由于有顺序关系,因此是A()。

总结:

1.适当地展开式子

2.可能有些期望题可以从状压dp入手

转载于:https://www.cnblogs.com/supy/p/8075295.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值