数据挖掘十大算法总结--核心思想,算法优缺点,应用领域

                                                                   ------------------------------------------------------------------------------------

                                                                                                    欢迎转载,请附上链接

                                                                           http://blog.csdn.net/iemyxie/article/details/40736773 

                                                                   ------------------------------------------------------------------------------------

本文所涉算法均仅仅概述核心思想。详细实现细节參看本博客“数据挖掘算法学习”分类下其它文章,不定期更新中。

參考了很多资料加上个人理解,对十大算法进行例如以下分类:

分类算法:C4.5,CART,Adaboost,NaiveBayes,KNN,SVM

聚类算法:KMeans

统计学习:EM

关联分析:Apriori

链接挖掘:PageRank

当中,EM算法虽能够用来聚类。可是因为EM算法进行迭代速度非常慢,比kMeans性能差非常多,而且KMeans算法 聚类效果没有比EM差多少,所以一般用kMeans进行聚类,而不是EM。EM算法的主要作用是用来进行參数预计,故将其分入统计学习类。SVM算法在回归分析,统计方面也有不小的贡献,而且在分类算法中也占有一定地位。思考了下还是将SVM分入分类算法中。对分类有不同看法的读者欢迎留言讨论。

下面逐一介绍。

分类算法--C4.5 具体解说參见数据挖掘算法学习(五)C4.5算法

核心思想:以信息增益率为衡量标准实现对数据归纳分类

算法长处:产生的分类规则易于理解,准确率较高

算法缺点:在构造树的过程中。须要对数据集进行多次的顺序扫描和排序,因而导致算法的低效

应用领域:临床决策、生产制造、文档分析、生物信息学、空间数据建模等

 

分类算法--CART  具体解说參见数据挖掘算法学习(六)CART算法

核心思想:以基于最小距离的尼基指数预计函数为衡量标准对数据进行递归分类

算法长处:抽取规则简便且易于理解。面对存在缺失值、变量数多等问题时很稳健

算法缺点:要求被选择的属性仅仅能产生两个子节点;类别过多时,错误可能添加的较快

应用领域:信息失真识别。电信业潜在客户识别。预測贷款风险等等

 

分类算法--Adaboost 具体解说參见数据挖掘算法学习(八)Adaboost算法

核心思想:针对同一个训练集训练不同的分类器(弱分类器),然后把这些弱分类器集合起来,构成一个更强的终于分类器(强分类器)

算法长处:高精度,简单无需做特征筛选。不会过度拟合

算法缺点:训练时间过长,运行效果依赖于弱分类器的选择

应用领域:广泛应用于人脸检測、目标识别等领域

 

分类算法--NaiveBayes 具体解说參见数据挖掘算法学习(三)NaiveBayes算法

核心思想:通过某对象的先验概率,利用贝叶斯公式计算出其后验概率,即该对象属于某一类的概率。选择具有最大后验概率的类作为该对象所属的类

算法长处:算法简单,所需预计的參数非常少。对缺失数据不太敏感

算法缺点:属性个数比較多或者属性之间相关性较大时。分类效率下降

应用领域:垃圾邮件过滤,文本分类,新闻分类。Query分类,商品分类等

 

分类算法--KNN

核心思想:假设一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别

算法长处:简单。无需预计參数,无需训练。适合于多分类问题

算法缺点:计算量较大。可解释性较差,无法给出决策树那样的规则

应用领域:客户流失预測、欺诈侦測等(更适合于稀有事件的分类问题)

 

分类算法--SVM 具体解说參见数据挖掘算法学习(七)SVM算法

核心思想:建立一个最优决策超平面。使得该平面两側距离平面近期的两类样本之间的距离最大化,从而对分类问题提供良好的泛化能力

算法长处:更好的泛化能力,解决非线性问题的同一时候避免维度灾难,可找到全局最优

算法缺点:运算效率低。计算时占用资源过大

应用领域:遥感图像分类,污水处理过程执行状态监控等

 

聚类算法--KMeans   具体解说參见数据挖掘算法学习(一)KMeans算法

核心思想:输入聚类个数k,以及包括n个数据对象的数据库。输出满足方差最小标准的k个聚类

算法长处:运算速度比KNN快

算法缺点:聚类数目k是一个输入參数。不合适的k值可能返回较差的结果

应用领域:图片切割。分析商品相似度进而归类商品,分析公司的客户分类以使用不同的商业策略

 

统计学习--EM

核心思想:通过E步骤和M步骤使得期望最大化

算法长处:简单稳定

算法缺点:迭代速度慢,次数多,easy陷入局部最优

应用领域:參数预计。计算机视觉的数据集聚

 

关联分析--Apriori

核心思想:基于两阶段频集思想挖掘关联规则的算法

算法长处:简单、易理解、数据要求低

算法缺点:I/O负载大,产生过多的候选项目集

应用领域:消费市场价格分析,入侵检測。移动通信领域

 

链接挖掘--PageRank

核心思想:基于从很多优质的网页链接过来的网页,必然还是优质网页的回归关系。来判定全部网页的重要性

算法长处:全然独立于查询。仅仅依赖于网页链接结构,能够离线计算

算法缺点:忽略了网页搜索的时效性;旧网页排序非常高,存在时间长,积累了大量的in-links,拥有最新资讯的新网页排名却非常低。由于它们差点儿没有in-links

应用领域:页面排序


Update on:2014-12-10

转载于:https://www.cnblogs.com/wzzkaifa/p/7079630.html

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
1 目标检测的定义 目标检测(Object Detection)的任务是找出图像中所有感兴趣的目标(物体),确定它们的类别和位置,是计算机视觉领域的核心问题之一。由于各类物体有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具有挑战性的问题。 目标检测任务可分为两个关键的子任务,目标定位和目标分类。首先检测图像中目标的位置(目标定位),然后给出每个目标的具体类别(目标分类)。输出结果是一个边界框(称为Bounding-box,一般形式为(x1,y1,x2,y2),表示框的左上角坐标和右下角坐标),一个置信度分数(Confidence Score),表示边界框中是否包含检测对象的概率和各个类别的概率(首先得到类别概率,经过Softmax可得到类别标签)。 1.1 Two stage方法 目前主流的基于深度学习的目标检测算法主要分为两类:Two stage和One stage。Two stage方法将目标检测过程分为两个阶段。第一个阶段是 Region Proposal 生成阶段,主要用于生成潜在的目标候选框(Bounding-box proposals)。这个阶段通常使用卷积神经网络(CNN)从输入图像中提取特征,然后通过一些技巧(如选择性搜索)来生成候选框。第二个阶段是分类和位置精修阶段,将第一个阶段生成的候选框输入到另一个 CNN 中进行分类,并根据分类结果对候选框的位置进行微调。Two stage 方法的优点是准确度较高,缺点是速度相对较慢。 常见Tow stage目标检测算法有:R-CNN系列、SPPNet等。 1.2 One stage方法 One stage方法直接利用模型提取特征值,并利用这些特征值进行目标的分类和定位,不需要生成Region Proposal。这种方法的优点是速度快,因为省略了Region Proposal生成的过程。One stage方法的缺点是准确度相对较低,因为它没有对潜在的目标进行预先筛选。 常见的One stage目标检测算法有:YOLO系列、SSD系列和RetinaNet等。 2 常见名词解释 2.1 NMS(Non-Maximum Suppression) 目标检测模型一般会给出目标的多个预测边界框,对成百上千的预测边界框都进行调整肯定是不可行的,需要对这些结果先进行一个大体的挑选。NMS称为非极大值抑制,作用是从众多预测边界框中挑选出最具代表性的结果,这样可以加快算法效率,其主要流程如下: 设定一个置信度分数阈值,将置信度分数小于阈值的直接过滤掉 将剩下框的置信度分数从大到小排序,选中值最大的框 遍历其余的框,如果和当前框的重叠面积(IOU)大于设定的阈值(一般为0.7),就将框删除(超过设定阈值,认为两个框的里面的物体属于同一个类别) 从未处理的框中继续选一个置信度分数最大的,重复上述过程,直至所有框处理完毕 2.2 IoU(Intersection over Union) 定义了两个边界框的重叠度,当预测边界框和真实边界框差异很小时,或重叠度很大时,表示模型产生的预测边界框很准确。边界框A、B的IOU计算公式为: 2.3 mAP(mean Average Precision) mAP即均值平均精度,是评估目标检测模型效果的最重要指标,这个值介于0到1之间,且越大越好。mAP是AP(Average Precision)的平均值,那么首先需要了解AP的概念。想要了解AP的概念,还要首先了解目标检测中Precision和Recall的概念。 首先我们设置置信度阈值(Confidence Threshold)和IoU阈值(一般设置为0.5,也会衡量0.75以及0.9的mAP值): 当一个预测边界框被认为是True Positive(TP)时,需要同时满足下面三个条件: Confidence Score > Confidence Threshold 预测类别匹配真实值(Ground truth)的类别 预测边界框的IoU大于设定的IoU阈值 不满足条件2或条件3,则认为是False Positive(FP)。当对应同一个真值有多个预测结果时,只有最高置信度分数的预测结果被认为是True Positive,其余被认为是False Positive。 Precision和Recall的概念如下图所示: Precision表示TP与预测边界框数量的比值 Recall表示TP与真实边界框数量的比值 改变不同的置信度阈值,可以获得多组Precision和Recall,Recall放X轴,Precision放Y轴,可以画出一个Precision-Recall曲线,简称P-R
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值