POJ-2411 Mondriaan's Dream 状态压缩DP

本文提供了一种高效的解题思路,通过状态压缩和位运算实现快速的状态转移,有效减少了状态数量并简化了算法。此外,文章对比了两种不同的解题方案,并分享了一个仅用20行代码解决问题的简洁实现。

  题目链接:http://poj.org/problem?id=2411

  啪啦啪啦敲了80+行,1A。结果看Discuss,别人20行就解决了= =!,果然是我想复杂了。我的状态压缩效果不是很好,貌似很挫,因为状态考虑得太多了,没有类化,用了2bit的空间来表示每个格子的状态即当前放的是横向01,没放00,竖向11。而且状态转移的时候考虑的是从后面来判断前面的状态是否可行,这样的话每行就多记录了些状态(需要记录格子为空的情况)。

  其实简单的做法就是从前一状态推向后一状态,用0表示当前格子放置了,1表示当前格子放置的是竖向的,而且是向下凸出的。状态转移方程:f[k][i]=sum{f[k-1][j]}(i和j状态需匹配),这样的话转移的状态就少了很多,而且操作很方便。一般的做法就是先用DFS搜索出status,然后再来判断匹配。其实这里有个很好的技巧,可以避免先用DFS来找出status。我是从Discuss那份20行代码里学的,从状态的每个位开始,然后遍历每个状态,根据当前状态来确定后继状态,知道遍历完,具体看下面:

算法核心:  //摘自:http://www.cppblog.com/kill-myself/
      利用二进制状态压缩保存后n个格子是否放置,利用位运算可以更高效率地状态转移(在本程序中,第i位二进制保存:后n个格子中,在第i列的格子是否已填)。由于可以由前一个格子状态转移,利用滚动数组节省空间。
具体算法:
      1、由于每个格子都要填满,所以穷举每个格子。
      2、每个格子的状态可以由前一个格子的状态转移得到
                a,如果前一个格子某状态中当前格子已填,直接加在当前格子的相应的状态中。
                b,如果前一个格子某状态中当前格子未填,加在竖放的状态中。
                c,如果前一个格子某状态中当前格子未填,下一个格子未放,且不是最后一列,加在横放的状态中

  代码如下:

 1 #include<cstdio>
 2 #include<string.h>
 3 long long f[2][4100],a,b,n,m,k,j,p;
 4 int main(){
 5    while(scanf("%d%d",&n,&m),memset(f,0,sizeof(f)),f[0][0]=p=1,a=n>m?n:m,b=n+m-a){
 6       while(a--)
 7        for(j=0;++j<=b;memset(f[p=1-p],0,sizeof(f[p])))
 8            for(k=(1<<b);--k+1;)
 9               if(k&1<<j-1)
10                  f[p][k&~(1<<j-1)]+=f[1-p][k];
11               else{
12                    f[p][k|1<<j-1]+=f[1-p][k];
13                    if(j<b&&!(k&1<<j))
14                       f[p][k|1<<j]+=f[1-p][k];
15               }
16       printf("%lld\n",f[1-p][0]);
17    }
18 }

     Orz一下...........

  顺便说一下,本题还可用矩阵乘法来做,对于亿量级数据,矩阵+二分可以秒杀。基本方法就是转化成图论来做,找经过n条边的回路。可参考:Matrix67<十个利用矩阵乘法解决的经典题目>

 我的搓代码:

 1 //STATUS:C++_AC_1047MS_3592KB
 2 #include<stdio.h>
 3 #include<stdlib.h>
 4 #include<string.h>
 5 #include<math.h>
 6 #include<iostream>
 7 #include<string>
 8 #include<algorithm>
 9 #include<vector>
10 #include<queue>
11 #include<stack>
12 #include<map>
13 using namespace std;
14 #define LL __int64
15 #define pii pair<int,int>
16 #define Max(a,b) ((a)>(b)?(a):(b))
17 #define Min(a,b) ((a)<(b)?(a):(b))
18 #define mem(a,b) memset(a,b,sizeof(a))
19 #define lson l,mid,rt<<1
20 #define rson mid+1,r,rt<<1|1
21 const int N=14010,INF=0x3f3f3f3f,MOD=1999997;
22 const LL LLNF=0x3f3f3f3f3f3f3f3fLL;
23 
24 int sta[N],q[N][90],cou[N];
25 LL f[12][N];
26 int n,m,stacou;
27 
28 void dfs(int cur,int a,int one)
29 {
30     if(cur==m){
31         if(one)f[0][stacou]=1;
32         sta[stacou++]=a;
33         return;
34     }
35     dfs( cur+1,a,one&one);
36     dfs( cur+1,a|(1<<(cur<<1)),0 );
37     if(cur+2<=m)dfs( cur+2,a|(15<<(cur<<1)),one&one );
38     return;
39 }
40 
41 void match()
42 {
43     int i,j,p,ok;
44     for(i=0;i<stacou;i++){
45         for(j=0;j<stacou;j++){
46             for(p=0,ok=1;p<m;p++){
47                 if( (sta[i]&(1<<(p<<1)))==0 && (sta[j]&(1<<(p<<1)))!=0 )continue;
48                 else if( (sta[i]&(3<<(p<<1)))==(1<<(p<<1))
49                    && (sta[j]&(1<<(p<<1)))==0 )continue;
50                 else if( (sta[i]&(3<<(p<<1)))==(3<<(p<<1))
51                     && sta[j]&(3<<(p<<1)) )continue;
52                 else {ok=0;break;}
53             }
54             if(ok)q[i][cou[i]++]=j;
55         }
56     }
57 }
58 
59 int main()
60 {
61  //   freopen("in.txt","r",stdin);
62     int k,i,j,ok;
63     LL ans;
64     while(~scanf("%d%d",&n,&m) && (n||m))
65     {
66         if((n*m)&1){printf("0\n");continue;}
67         if(m>n)n^=m^=n^=m;
68         ans=0;
69         mem(f,0);
70         mem(cou,0);
71         stacou=0;
72         dfs(0,0,1);
73         match();
74         for(k=1;k<n;k++){
75             for(i=0;i<stacou;i++){
76                 for(j=0;j<cou[i];j++)
77                     f[k][i]+=f[k-1][q[i][j]];
78             }
79         }
80         k--;
81         for(i=0;i<stacou;i++){
82             for(j=0,ok=1;j<m;j++){
83                 if( (sta[i]&(1<<(j<<1)))==0){ok=0;break;};
84             }
85             if(ok)ans+=f[k][i];
86         }
87 
88         printf("%I64d\n",ans);
89     }
90     return 0;
91 }

 

转载于:https://www.cnblogs.com/zhsl/archive/2013/03/01/2937993.html

状压DP超详细教程:从入门到精通 状压DP状态压缩动态规划)是一种非常实用的算法技巧,特别适合处理状态可以用二进制表示的问题。下面我将用最详细、最系统的方式讲解这个技术,保证你能彻底理解。 一、状压DP的本质 1.1 什么是状态压缩状态压缩的核心思想是:用二进制位来表示某种状态。比如: 有5个灯泡:可以用5位二进制数表示它们的开关状态 10101表示第1、3、5个灯亮,2、4灭 有8个任务是否完成:可以用8位二进制数表示 11001001表示第1、2、5、8个任务已完成 1.2 为什么需要压缩状态? 传统DP在表示某些状态时会遇到困难。例如: 棋盘放置问题:要记录哪些格子被占用 任务分配问题:要记录哪些任务已被分配 路径问题:要记录哪些点已经访问过 如果用传统数组表示,可能需要多维数组,空间复杂度爆炸。而用二进制压缩,一个整数就能表示复杂的状态。 二、状压DP的三大组成部分 2.1 状态表示 用一个整数的二进制形式表示状态: 每一位代表一个元素的状态(选中/未选中,存在/不存在等) 整数范围:0到2ⁿ-1(n是元素个数) 示例:3个物品的选择状态 000(0):都没选 001(1):选第1个 010(2):选第2个 011(3):选第1、2个 ... 111(7):全选 2.2 状态转移 定义如何从一个状态转移到另一个状态,通常包括: 检查当前状态的某些位 根据条件修改某些位 生成新状态 2.3 DP数组设计 dp[state]或dp[state][i],其中: state是压缩后的状态 i可能是附加信息(如当前位置、已选数量等) 三、必须精通的位运算技巧 3.1 基本操作 操作 代码表示 示例(假设8位二进制) 设置第i位为1 `state (1 << i)` `0010 (1<<2) → 0110` 设置第i位为0 state & ~(1 << i) 0110 & ~(1<<2) → 0010 切换第i位 state ^ (1 << i) 0110 ^ (1<<2) → 0010 检查第i位是否为1 (state >> i) & 1 (0110 >> 2) & 1 → 1 3.2 高级技巧 枚举所有子集: cpp for(int subset = state; subset; subset = (subset-1)&state){ // 处理subset } 最低位的1: cpp int lowbit = x & -x; 统计1的个数: cpp int count = __builtin_popcount(state); // GCC内置函数 六、状压DP的优化技巧 6.1 预处理合法状态 很多问题中,大部分状态是不合法的,可以预先筛选: cpp vector<int> valid_states; for (int state = 0; state < (1 << n); ++state) { if (check(state)) { // 检查state是否合法 valid_states.push_back(state); } } 6.2 滚动数组优化 当状态只依赖前一个阶段时,可以节省空间: cpp vector<vector<int>> dp(2, vector<int>(size)); // 只保留当前和上一个状态 int now = 0, prev = 1; for (int i = 1; i <= n; ++i) { swap(now, prev); for (auto& state : valid_states) { dp[now][state] = 0; // 清空当前状态 // 状态转移... } } 6.3 记忆化搜索实现 有时递归形式更直观: cpp int memo[1<<20][20]; // 记忆化数组 int dfs(int state, int u) { if (memo[state][u] != -1) return memo[state][u]; // 递归处理... return memo[state][u] = res; } 七、常见问题与调试技巧 7.1 常见错误 位运算优先级:总是加括号,如(state & (1 << i)) 数组越界:状态数是2ⁿ,不是n 初始状态设置错误:比如TSP中dp[1][0] = 0 边界条件处理不当:如全选状态是(1<<n)-1,不是1<<n 7.2 调试建议 打印中间状态:将二进制状态转换为可视化的形式 cpp void printState(int state, int n) { for (int i = n-1; i >= 0; --i) cout << ((state >> i) & 1); cout << endl; } 从小规模测试用例开始(如n=3,4) 使用assert检查关键假设 八、学习路线建议 初级阶段: 练习基本位操作 解决简单状压问题(如LeetCode 464、526题) 中级阶段: 掌握经典模型(TSP、棋盘覆盖) 学习优化技巧(预处理、滚动数组) 高级阶段: 处理高维状压(如需要同时压缩多个状态) 结合其他算法(如BFS、双指针) 九、实战练习题目推荐 入门题: LeetCode 78. Subsets(理解状态表示) LeetCode 464. Can I Win(简单状压DP) 中等题: LeetCode 526. Beautiful Arrangement LeetCode 691. Stickers to Spell Word 经典题: POJ 2411. Mondriaan's Dream(棋盘覆盖) HDU 3001. Travelling(三进制状压) 挑战题: Codeforces 8C. Looking for Order Topcoder SRM 556 Div1 1000. LeftRightDigitsGame2 记住,掌握状压DP的关键在于: 彻底理解二进制状态表示 熟练运用位运算 通过大量练习培养直觉 希望这份超详细的教程能帮助你彻底掌握状压DP!如果还有任何不明白的地方,可以针对具体问题继续深入探讨。 请帮我转成markdown语法输出,谢谢
08-13
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值