BFPRT: O(n)最坏时间复杂度找第K大问题

同时找到最大值与最小值

找到n个元素中的最大/小值,比较次数为n-1, 找到n个元素中的最大值和最小值,可以Two Pass,比较次数为2n-2
也可以One Pass,比较次数至多为\(\left \lfloor 3n/2 \right \rfloor\)
首先对最大值和最小值进行初始化,n为奇数时MAX和MIN均初始化v[0],n为偶数时MAX和MIN分别初始化为v[0]和v[1]中的最大值和最小值
然后每两个数比较一次,小的数和MIN比较,大的数和MAX比较,共进行三次

  • 对于n为奇数,总比较次数为\(3(n-1)/2 = \left \lfloor 3n/2 \right \rfloor\)
  • 对于n为偶数,总比较次数为\(3(n-2)/2 + 1= 3n/2 - 2\)

无论哪种情况,总的比较次数至多为\(\left \lfloor 3n/2 \right \rfloor\)

#include <iostream>
#include <vector>
using namespace std;

void findMaxMin(vector<int>& v){
    
    int n = v.size();
    if(n == 0) return;
    
    int MIN, MAX, i;
    if(n % 2 == 0){
        if(v[0] > v[1]) {
            MIN = v[1];
            MAX = v[0];
        } else {
            MIN = v[1];
            MAX = v[0];
        }
        i = 2;
    } else {
        i = 1;
        MIN = MAX = v[0];
    }


    while(i < n){
        if(v[i] < v[i+1]){
            MIN = min(v[i], MIN);
            MAX = max(v[i+1], MAX);
        } else {
            MIN = min(v[i+1], MIN);
            MAX = max(v[i], MAX);
        }
        i += 2;
    }

    cout << "MAX = " << MAX << ", MIN = " << MIN << endl;
}
int main(){
    vector<int> v{1,4,3,2,5,6,0,9,6,8,8,9};

    findMaxMin(v);
    return 0;
}

O(n)最坏时间复杂度找到第k大算法(BFPRT)

BFPRT算法可以在O(n)最坏时间复杂度找到第k大,也可用于解决TOP-K问题
215. Kth Largest Element in an Array
随机化使用均摊的思想就不写了,用BFPRT检验下
严格的BFPRT

class Solution {
public:
    
    void InsertSort(vector<int>& a, int l, int r){
        for(int i = l + 1; i <= r; i++){
            auto x = a[i];
            auto j = i;
            while(j > l && x < a[j-1]){
                a[j] = a[j-1];
                j--;
            }
            a[j] = x;
        }
        
    }

    int Partiton(vector<int>& a, int l, int r, int m){
        int x = a[m];
        int i = l;
        int j = r;

        swap(a[m], a[l]);
        while(i < j){
            while(i < j && a[j] >= x) j--;
            a[i] = a[j];
            while(i < j && a[i] <= x) i++;
            a[j] = a[i];
        }
        a[i] = x;
        return i;
    }

    int BFPRT(vector<int>& a, int l, int r, int k){
        if(r - l + 1 < 5) {
            InsertSort(a, l, r);
            return l + k - 1;
        }
        
        int e = l - 1;
        
        for(int i = l; i + 4 <= r; i += 5){
            InsertSort(a, i, i+4);
            swap(a[++e], a[i+2]);
        }
        
        int m = BFPRT(a, l, e, (e - l + 1) / 2 + 1);
        int p = Partiton(a, l, r, m);
        int n = p - l + 1;
        if(n == k) return p;
        if(n > k) return BFPRT(a, l, p-1, k);
        return BFPRT(a, p+1, r, k - n);
    }
    
    int findKthLargest(vector<int>& nums, int k) {
       
        return nums[BFPRT(nums, 0, nums.size()-1, nums.size() - k + 1)];
    }
};

我自己最开始的写法,对找中位数的BFPRT函数做了特殊处理,使用FindMin代替,减少了无必要的BFPRT递归调用

class Solution {
public:
    
    int InsertSort(vector<int>& a, int l, int r){
        for(int i = l + 1; i <= r; i++){
            auto x = a[i];
            auto j = i;
            while(j > l && x < a[j-1]){
                a[j] = a[j-1];
                j--;
            }
            a[j] = x;
        }
        return  l + (r - l) / 2;
    }

    int Partiton(vector<int>& a, int l, int r, int m){
        int x = a[m];
        int i = l;
        int j = r;

        swap(a[m], a[l]);
        while(i < j){
            while(i < j && a[j] >= x) j--;
            a[i] = a[j];
            while(i < j && a[i] <= x) i++;
            a[j] = a[i];
        }
        a[i] = x;
        return i;
    }




    int FindMid(vector<int>& a, int l, int r){
        if(r - l + 1 < 5) return InsertSort(a, l, r);
        int p = l - 1;

        for(int i = l; i < r - 5; i += 5){
            int mid = InsertSort(a, i, i+4);

            swap(a[++p], a[mid]);
        }
        return FindMid(a, l, p);
    }

    int BFPRT(vector<int>& a, int l, int r, int k){
        if(l == r) return a[l];

        int m = FindMid(a, l, r);
        int p = Partiton(a, l, r, m);
        int n = p - l + 1;
        if(n == k) return a[p];
        if(n > k) return BFPRT(a, l, p, k);
        return BFPRT(a, p+1, r, k - n);
    }
    
    int findKthLargest(vector<int>& nums, int k) {
        return BFPRT(nums, 0, nums.size()-1, nums.size() - k + 1);
    }
};
算法分析

当找到中位数的中位数时,除了不能被n整除的剩余组和包含有x的那个组除外,至少有一半的组中每个组至少3个元素大于x,所以大于x的元素个数最少为
\[ \begin{aligned} 3 \left \lceil \frac{1}{2}\left \lceil \frac{n}{5}\right \rceil{} -2 \right \rceil \geq \frac{3n}{10} - 6 \end{aligned} \]
递归选第k大最多有\(7n/ 10 + 6\)个元素
最坏情况下\(T(n) \leq T(\left \lceil n/5 \right \rceil) + T(7n/ 10 + 6) + O(n)\)
假定\(T(n) \leq cn\)\(O(n)\)的上界为\(an\)
\[ \begin{aligned} T(n) &\leq c\left \lceil n/ 5 \right \rceil + c(7n/ 10 + 6) + an\\ &\leq cn/5 + c + 7cn/10 + 6c + an \\ & = 9cn / 10 + 7c + an \\ & = cn + (-cn/10) + 7c + an \end{aligned} \]

只要使得\(-cn/10 + 7c + an \leq 0\)即可, 也就是$c \geq 10a(n / n - 70) $ 假设n>140,则\((n / n - 70) \leq 2\), 选择\(c \geq 20a\)即可

问题
  • 如果每组分为3个元素,BFPRT的运行时间是线性的吗?不是(\(T(n) \leq T(\left \lceil n/ 3 \right \rceil) + T(2n/3 + 4)\),由此得到常数项a,c为0时才满足线性时间,不符合)
  • 每组分为7个呢?是
参考
TODO

k分位数

转载于:https://www.cnblogs.com/qbits/p/11171619.html

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值