感人。。肝了一下午+一晚上,为啥别人省的签到题我都不会啊zzzzzz GDOI2017day2密码:easy?GDOI2018jian
01分数规划学得太差(低头
solve1:(优秀的解法是solve2,这个东西有点搞笑)
那么对于这道题,每条边我先把它看作拆成c条边(脑海里)
容易联想到了费用流,先解决一个弱化版,把分子搞出来
对于加边很好弄,有边相连的连一条无限流量的边,边权为-b-d,因为假如你新图多加了这条边,费用就多了b+d,原图的费用减新图的费用就得-b-d
同理对于减一条边,相当于费用差-a+d,但是怎么搞呢?
减边和加边我们可以看成一个单峰函数,只是加边时新图的花费随加的边数增大而增大比较好弄,减边相反不好弄,那就把它置反就好弄了
意思是我们可以视为先把所有的边减了,然后每用一条原本的边,相当于费用差+a-d,把原来多减的加回来
做法逐渐出来了:sum初始化为c*d-c*a(减掉所有的边),然后对于加边,有边相连的两点连一条无限流量的边,边权为-b-d,对于减边,有边相连的两点连一条流量为c的边,边权为a-d。
考虑加上一个分数规划,先二分答案
回忆分数规划的形式(a1*x1+a2*x2……an*xn)/(b1*x1+b2*x2……bn*xn)
a数组放的是边权,要求选的连续,b放的是边数
要的是a-b*mid>0,也就是费用流跑出来费用为正
对于加边一点问题没有,b=1,边权变为-b-d-mid
然而减边我们遇到了同样的问题,也就是用的原来边越多,减的边越少
同样地我们可以直接在sum初始化的时候先视为减掉所有的边,也就是sum-=c*mid,(不难发现这是对的,因为在分母加了,然后乘到左边,移项,就是这个值)然后每多用一条原来的边,就加上mid,意思是令这些边对应b=-1,边权变为a-d+mid
有一个重要的东西放到最后,相信大家都有一个疑问,就是我们需要保证先用原本的边,再加边,如何保证?
考虑到用原边的费用为a-d+mid,加边费用为-b-d-mid,原边费用一定大于加边费用,那么我们可以把费用置反,然后跑出来费用为负,说明当前解能够算出。
solve2
我的捞比做法太慢了,跑了1s+,更快速的可以跑到100ms+
我们理解为方伯伯已经做完了一次费用流
考虑对于加边,相当于在费用流里面增广,减边相当于在费用流里面退流,那么我们对于一条边,x->y连边权为-b-d的边,若c!=0 y->x连-a+d的边,只要我们在里面找到一个正环,那么就可以退流+增广达到一个更小的值
同样的二分答案,同样我们需要把边权置反——负环才好找啊~~
比垃圾费用流好到不知道哪里去了
#include<cstdio> #include<iostream> #include<cstring> #include<cstdlib> #include<algorithm> #include<cmath> using namespace std; int n,m; struct node { int x,y,c,next,other;double d; }a[410000];int len,last[5100]; void ins(int x,int y,int c,double d) { int k1,k2; len++;k1=len; a[len].x=x;a[len].y=y;a[len].c=c;a[len].d=d; a[len].next=last[x];last[x]=len; len++;k2=len; a[len].x=y;a[len].y=x;a[len].c=0;a[len].d=-d; a[len].next=last[y];last[y]=len; a[k1].other=k2; a[k2].other=k1; } double sum,cc; int head,tail,list[5100];bool v[5100]; int pre[5100],c[5100];double d[5100]; bool spfa() { memset(c,0,sizeof(c));c[n+1]=(1<<30); for(int i=0;i<=n+2;i++)d[i]=(1<<30); d[n+1]=0; head=1,tail=2;list[1]=n+1;v[n+1]=true; while(head!=tail) { int x=list[head]; for(int k=last[x];k;k=a[k].next) { int y=a[k].y; if(a[k].c>0&&d[y]>d[x]+a[k].d) { d[y]=d[x]+a[k].d; c[y]=min(a[k].c,c[x]); pre[y]=k; if(v[y]==false) { v[y]=true; list[tail]=y; tail++;if(tail==5050)tail=1; } } } head++;if(head==5050)head=1; v[x]=false; } if(d[n+2]!=d[0]) { sum+=d[n+2]*c[n+2]; cc+=c[n+2]; int y=n+2; while(y!=n+1) { int k=pre[y]; a[k].c-=c[n+2]; a[a[k].other].c+=c[n+2]; y=a[k].x; } return true; } return false; } struct edge{int x,y,a,b,c;double d;}e[3100]; bool check(double mid) { sum=0,cc=0; len=0;memset(last,0,sizeof(last)); for(int i=1;i<=m;i++) { if(e[i].x==n+1){ins(e[i].x,e[i].y,e[i].c,0);continue;} sum+= -( e[i].c*e[i].d-e[i].c*e[i].a -e[i].c*mid) ; ins(e[i].x,e[i].y,e[i].c , -( -e[i].d+e[i].a +mid) ); ins(e[i].x,e[i].y,(1<<30), -( -e[i].d-e[i].b -mid) ); } while(spfa()==true); return sum<0; } int main() { freopen("a.in","r",stdin); freopen("a.out","w",stdout); scanf("%d%d",&n,&m); for(int i=1;i<=m;i++) scanf("%d%d%d%d%d%lf",&e[i].x,&e[i].y,&e[i].a,&e[i].b,&e[i].c,&e[i].d); double l=0,r=100000000,ans; while(r-l>=1e-3) { double mid=(l+r)/2; if(check(mid))l=mid; else r=mid; } printf("%.2lf",l); return 0; }
#include<cstdio> #include<iostream> #include<cstring> #include<cstdlib> #include<algorithm> #include<cmath> using namespace std; int n,m; struct node { int x,y,next;double d; }a[410000];int len,last[5100]; void ins(int x,int y,double d) { len++; a[len].x=x;a[len].y=y;a[len].d=d; a[len].next=last[x];last[x]=len; } bool v[5100]; double d[5100]; bool spfa(int x) { v[x]=true; for(int k=last[x];k;k=a[k].next) { int y=a[k].y; if(d[y]>d[x]+a[k].d) { if(v[y])return true; d[y]=d[x]+a[k].d; if(spfa(y))return true; } } v[x]=false; return false; } struct edge{int x,y,a,b,c;double d;}e[3100]; bool check(double mid) { len=0;memset(last,0,sizeof(last)); for(int i=1;i<=m;i++) { if(e[i].x==n+1){ins(e[i].x,e[i].y,e[i].d);continue;} ins(e[i].x,e[i].y,-(-e[i].b-e[i].d-mid)); if(e[i].c!=0)ins(e[i].y,e[i].x,-(-e[i].a+e[i].d-mid)); } memset(v,false,sizeof(v)); memset(d,0,sizeof(d)); for(int i=1;i<=n+2;i++) if(spfa(i))return true; return false; } int main() { scanf("%d%d",&n,&m); for(int i=1;i<=m;i++) scanf("%d%d%d%d%d%lf",&e[i].x,&e[i].y,&e[i].a,&e[i].b,&e[i].c,&e[i].d); double l=0,r=100000000,ans; while(r-l>=1e-3) { double mid=(l+r)/2; if(check(mid))l=mid; else r=mid; } printf("%.2lf",l); return 0; }