Mountain Number
One integer number x is called "Mountain Number" if:
(1) x>0 and x is an integer;
(2) Assume x=a[0]a[1]...a[len-2]a[len-1](0≤a[i]≤9, a[0] is positive). Any a[2i+1] is larger or equal to a[2i] and a[2i+2](if exists).
For example, 111, 132, 893, 7 are "Mountain Number" while 123, 10, 76889 are not "Mountain Number".
Now you are given L and R, how many "Mountain Number" can be found between L and R (inclusive) ?
Input
The first line of the input contains an integer T (T≤100), indicating the number of test cases.
Then T cases, for any case, only two integers L and R (1≤L≤R≤1,000,000,000).
Output
Sample Input
3 1 10 1 100 1 1000
Sample Output
9 54 384
给定范围寻找山数的个数。
标准的数位dp。从首位枚举到末尾,当前项与前一项符合,却不一定不满足条件,还需要与后一项进行比对,所以需要记录pre。dp的三种状态dp[pos][pre][sta](当前位置,前一位,当前项奇偶)。套板子就行,注意首位的处理。
#include<iostream> #include<stdio.h> #include<stdlib.h> #include<string.h> #include<math.h> #include<queue> #include<stack> #include<string> #include<map> #include<set> #include<vector> #include<algorithm> #define MAX 105 #define INF 0x3f3f3f3f using namespace std; typedef long long ll; int a[MAX]; int poss; ll dp[MAX][10][2]; ll dfs(int pos,int pre,int sta,bool limit){ int i; if(pos==-1) return 1; if(!limit&&dp[pos][pre][sta]!=-1) return dp[pos][pre][sta]; int up=limit?a[pos]:9; int cnt=0; for(i=0;i<=up;i++){ if(sta==1&&pre>i) continue; if(pos!=poss&&sta==0&&pre<i) continue; cnt+=dfs(pos-1,i,!sta,limit&&i==a[pos]); } if(!limit) dp[pos][pre][sta]=cnt; return cnt; } ll solve(ll x){ int pos=0; while(x){ a[pos++]=x%10; x/=10; } poss=pos-1; return dfs(pos-1,-1,0,true); } int main() { int t; ll l,r; scanf("%d",&t); memset(dp,-1,sizeof(dp)); //初始化一次(优化) while(t--){ scanf("%lld%lld",&l,&r); printf("%lld\n",solve(r)-solve(l-1)); } return 0; }