uva 1349(拆点+最小费用流)

看是否存在一个环,使所有点都在此环内,并使权值最小。所有点在环内即父节点单一,所拆点建立二分图,只要最后通量为n,那么所有点就都能经过一遍,就符合上述情况。

#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
#include <vector>
#include <queue>
using namespace std;
const int maxn=500;
const int inf=0x3f3f3f3f;
typedef long long ll;
struct edge
{
    int fr,to,c,f,cost;
    edge(int a,int b,int cc,int ff,int d):fr(a),to(b),c(cc),f(ff),cost(d) {}
};
struct MCMF
{
    int n;
    int m;
    int p[maxn],d[maxn],a[maxn];
    int inq[maxn];
    vector<edge> ee;
    vector<int> g[maxn];
    void init(int n)
    {
        this->n=n;
        for(int i=0;i<=n;i++)
            g[i].clear();
            ee.clear();
    }
    void addage(int fr,int to,int c,int cost)
    {
        ee.push_back(edge(fr,to,c,0,cost));
        ee.push_back(edge(to,fr,0,0,-cost));
        m=ee.size();
        g[fr].push_back(m-2);
        g[to].push_back(m-1);
    }
    bool spfa(int s,int t,int &flow,ll &cost)
    {
        memset(inq,0,sizeof(inq));
        memset(d,inf,sizeof(d));
        d[s]=0;  p[s]=0;
        inq[s]=1;
        a[s]=inf;
        queue<int> q;
        q.push(s);
        while(q.size())
        {
            int u=q.front(); q.pop();
            inq[u]=0;
            for(int i=0;i<g[u].size();i++)
            {
                edge &nn=ee[g[u][i]];
                if((nn.c>nn.f)&&(d[nn.to]>d[nn.fr]+nn.cost))
                {
                    d[nn.to]=d[nn.fr]+nn.cost;
                     a[nn.to]=min(nn.c-nn.f,a[nn.fr]);
                     p[nn.to]=g[u][i];
                     if(!inq[nn.to])
                     {
                         q.push(nn.to);
                         inq[nn.to]=1;
                     }
                }
            }
        }
        if(d[t]==inf) return 0;
        flow+=a[t];
        cost+=(ll)d[t]*(ll)a[t];
        for(int i=t;i!=s;i=ee[p[i]].fr)
        {
            ee[p[i]].f+=a[t];
            ee[p[i]^1].f-=a[t];
        }
        return 1;
    }
    int mincostmaxflow(int s,int t,ll &cost)
    {
        int flow=0;
        cost=0;
        while(spfa(s,t,flow,cost));
        return flow;
    }
}zzz;
int n;
int main()
{
    while(~scanf("%d",&n)&&n)
    {
        zzz.init(n+n+100);
        int s=2*n+1,t=2*n+2;
        for(int i=1;i<=n;i++)
        {
            zzz.addage(s,i,1,0);
            zzz.addage(n+i,t,1,0);
        }
        int a,b,z;
        for(int i=1;i<=n;i++)
        {
            while(~scanf("%d",&a)&&a)
            {
                scanf("%d",&b);
               zzz.addage(i,a+n,1,b);
            }
        }
        ll cost=0;
       int flow=zzz.mincostmaxflow(s,t,cost);
       if(flow==n)
        printf("%lld\n",cost);
        else printf("N\n");
    }
    return 0;
}

 

转载于:https://www.cnblogs.com/Wangwanxiang/p/8371086.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值