P1962 斐波那契数列-题解(矩阵乘法扩展)

https://www.luogu.org/problemnew/show/P1962(题目传送)

n的范围很大,显然用普通O(N)的递推求F(n)铁定超时了。这里介绍一种用矩阵快速幂实现的解法:

首先普及一下矩阵乘法:

一个m*q的m行q列的矩阵A*一个q*n的q行n列的矩阵B得到一个m*n的m行n列的矩阵AB,则有:

通俗的讲,就是新矩阵第i行j列的数等于第一个矩阵第i行的q个数分别乘第二个矩阵的第j列的q个数并把它们加起来的和。注意,矩阵乘法满足结合律和分配律,但不满足交换律。

我们可以把第n项F(n)、第n-1项F(n-1)写成一个1*2的矩阵[Fn  Fn-1] 并考虑怎样由前面的[Fn-1  Fn-2]推过来。可以先把[Fn  Fn-1]写成[1*Fn-1+1*Fn-2  ​1*Fn-1+0*Fn-2]的形式,试推导一个矩阵base,使

[Fn-1  Fn-2

转载于:https://www.cnblogs.com/InductiveSorting-QYF/p/10679484.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值