Lp空间

本文探讨了数学中的Lp空间与ℓp空间概念,它们由p次可积函数和p次可和序列构成,是泛函分析与拓扑向量空间中巴拿赫空间的重要实例。文中还详细讨论了不同p-norm之间的关系,以及这些空间在工程学领域的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在数学中,Lp空间是由p次可积函数组成的空间;对应的p空间是由p次可和序列组成的空间。它们有时叫做勒贝格空间,以昂利·勒贝格命名(Dunford & Schwartz 1958,III.3),尽管依据Bourbaki (1987)它们是Riesz (1910)首先介入。在泛函分析和拓扑向量空间中,他们构成了巴拿赫空间一类重要的例子。

Lp空间在工程学领域的有限元分析中有应用。


 

Relations between p-norms

The grid distance or rectilinear distance (sometimes called the "Manhattan distance") between two points is never shorter than the length of the line segment between them (the Euclidean or "as the crow flies" distance). Formally, this means that the Euclidean norm of any vector is bounded by its 1-norm:

${\displaystyle \left\|x\right\|_{2}\leq \left\|x\right\|_{1}.}$
{\displaystyle \left\|x\right\|_{2}\leq \left\|x\right\|_{1}.}

This fact generalizes to p-norms in that the p-norm ||x||p of any given vector x does not grow with p:

||x||p+a ≤ ||x||p for any vector x and real numbers p ≥ 1 and a ≥ 0. (In fact this remains true for 0 < p < 1 and a ≥ 0.)

For the opposite direction, the following relation between the 1-norm and the 2-norm is known:

${\displaystyle \left\|x\right\|_{1}\leq {\sqrt {n}}\left\|x\right\|_{2}.}$
{\displaystyle \left\|x\right\|_{1}\leq {\sqrt {n}}\left\|x\right\|_{2}.}

This inequality depends on the dimension n of the underlying vector space and follows directly from the Cauchy–Schwarz inequality.

In general, for vectors in Cn where 0 < r < p:

${\displaystyle \left\|x\right\|_{p}\leq \left\|x\right\|_{r}\leq n^{(1/r-1/p)}\left\|x\right\|_{p}.}$
{\displaystyle \left\|x\right\|_{p}\leq \left\|x\right\|_{r}\leq n^{(1/r-1/p)}\left\|x\right\|_{p}.}

转载于:https://www.cnblogs.com/sddai/p/10050953.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值