题目描述
P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京。他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中。P教授有编号为1…N的N件玩具,第i件玩具经过压缩后变成一维长度为Ci.为了方便整理,P教授要求在一个一维容器中的玩具编号是连续的。同时如果一个一维容器中有多个玩具,那么两件玩具之间要加入一个单位长度的填充物,形式地说如果将第i件玩具到第j个玩具放到一个容器中,那么容器的长度将为 x=j-i+Sigma(Ck) i<=K<=j 制作容器的费用与容器的长度有关,根据教授研究,如果容器长度为x,其制作费用为(X-L)^2.其中L是一个常量。P教授不关心容器的数目,他可以制作出任意长度的容器,甚至超过L。但他希望费用最小.
样例输入
5 4
3
4
2
1
4
样例输出
1
题目分析
我们通过观察很容易可以得出一个O(n2)的动态规划算法我们令dp(i)表示枚举到第i位时的最优解,可以得到
dp(i)=min{dp(j)+(i−j−1+∑k=j+1iCk−L)2}
那么我们令
sum(i)表示从
∑ij=1Cj那么我们可以转换得到
dp(i)=min{dp(j)+(i−j−1+sum(i)−sum(j)−L)2}dp(i)=min{dp(j)+[i+sum(i)−(j+sum(j))−1−L]2}
那么我们令
t(i)=sum(i)+i所以有
dp(i)=min{dp(j)+(t(i)−t(j)+1−L)2}
想要优化DP,我们先观察这个dp(i)是否有单调性(如果有我们就可以斜率优化了)那么我们对于当前状态i我们只需要证明
dp(k)+(t(i)−t(k)+1−L)2>=dp(j)+(t(i)−t(j)+1−L)2(k<j)
在当前情况下,显然我们选择j策略,那么如果当前状态为之后的某一个状态那么答案就变成了我们需要证明
dp(k)+(t(s)−t(k)−1−L)2>=dp(j)+(t(s)−t(j)−1−L)2
显然我们需要证明的就是
(t(s)−t(k)−1−L)2>=(t(s)−t(j)−1−L)2
但是那不是显然么令
−1−L=K,t(s)−t(i)=d
(t(i)+d−t(k)+K)2>=(t(i)+d−t(j)+K)22×d×(t(i)−t(k)+K)>=2×d×(t(i)−t(j)+K)K−t(k)>=K−t(j)t(k)<=t(j)
。。。那不是显然么。。。OK我们可以开始推
首先我们当前的状态 i存在如果
dp(k)+(t(i)−t(k)+K)2>=dp(j)+(t(i)−t(j)+K)2(k<j)dp(k)+t(k)2−2t(i)t(k)−2Kt(k)>=dp(j)+t(j)2−2t(i)t(j)−2Kt(j)[dp(j)+t(j)2−2Kt(j)]−[dp(k)+t(k)2−2Kt(k)]2t(j)−2t(k)<=t(i)
那么我们维护队首和队尾满足该性质,然后。。。coding
代码
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
#include <queue>
using namespace std;
typedef long long LL;
const int MAXN = 50000;
LL t[MAXN+10], dp[MAXN+10], K;
int que[MAXN*10+10], l, r, C[MAXN+10], L;
double getk(int k, int j){return 1.0*(dp[j]+t[j]*t[j]-2*K*t[j]-dp[k]-t[k]*t[k]+2*K*t[k])/(2.0*t[j]-2.0*t[k]);}
int main(){
int n;
scanf("%d%d", &n, &L);
for(int i=1;i<=n;i++){
scanf("%d", &C[i]);
t[i] = t[i-1] + C[i];
}
for(int i=1;i<=n;i++) t[i] += i;
K = -1-L; dp[r++] = 0;
for(int i=1;i<=n;i++){
while(r-l>1&&getk(que[l], que[l+1])<=t[i]) l++;
dp[i] = dp[que[l]] + 1LL * (t[i]-t[que[l]]+K) * (t[i]-t[que[l]]+K);
while(r-l>1&&getk(que[r-1], i) < getk(que[r-2], que[r-1])) r--;
que[r++] = i;
}
cout<<dp[n]<<endl;
return 0;
}