P1398 [NOI2013]书法家

传送门

就是个普及组 $dp$ 合集,把 $NOI$ 从左到右拆成 $9$ 个部分,每个部分都可以分别 $dp$

除了 $N$ 的中间部分比较恶心以外其他都还好,自己推一下然后就知道转移,就 $N$ 的中间优化转移比较不好写

随便吧,反正 $9$ 个 $dp$ 都挺简单的,量变导致质变,我在想那一年的选手是不是都被恶心到了...反正我是被恶心死了

$luogu$ 上这一题空间限制太小了,原题是 $512MB$ ,所以这份代码在 $luogu$ 过不去(我都滚动数组了啊...) 

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
using namespace std;
typedef long long ll;
inline int read()
{
    int x=0,f=1; char ch=getchar();
    while(ch<'0'||ch>'9') { if(ch=='-') f=-1; ch=getchar(); }
    while(ch>='0'&&ch<='9') { x=(x<<1)+(x<<3)+(ch^48); ch=getchar(); }
    return x*f;
}
const int N=157,M=507;
int n,m,sum[N][M],ans;
int f[2][M][N][N],mx[M][N][N],mxx,mxxx[N][N];
inline int calc(int x,int l,int r) { return sum[r][x]-sum[r][x-1]-sum[l-1][x]+sum[l-1][x-1]; }
int main()
{
    n=read(),m=read();
    for(int i=1;i<=n;i++)
        for(int j=1;j<=m;j++) sum[i][j]=sum[i-1][j]+sum[i][j-1]-sum[i-1][j-1]+read();
    memset(f,~0x3f,sizeof(f)); memset(mx,~0x3f,sizeof(mx));
    for(int j=1;j<=n;j++)
        for(int k=j;k<=n;k++) f[0][0][j][k]=0;
    for(int i=1;i<=m;i++)
        for(int j=1;j<=n;j++)
            for(int k=j;k<=n;k++)
                f[0][i][j][k]=max(0,f[0][i-1][j][k])+calc(i,j,k);
    for(int i=2;i<=m;i++)
        for(int j=1;j<=n;j++)
            for(int k=n-1;k>=j;k--)
                mx[i][j][k]=max(mx[i][j][k+1],f[0][i-1][j][k+1]);
    for(int i=1;i<=m;i++)
    {
        memset(mxxx,~0x3f,sizeof(mxxx));
        for(int k=n;k>=1;k--)
            for(int j=1;j<=k;j++) mxxx[j][k]=max(mxxx[j-1][k],f[1][i-1][j][k]);
        for(int j=1;j<=n;j++)
        {
            mxx=mxxx[j-1][j-1];
            for(int k=j;k<=n;k++)
            {
                mxx=max(mxx,mxxx[j][k]);
                f[1][i][j][k]=max(mx[i][j][k],mxx)+calc(i,j,k);
            }
        }
    }
    memset(mx,~0x3f,sizeof(mx)); memset(f[0],~0x3f,sizeof(f[0]));
    for(int i=1;i<=m;i++)
        for(int k=1;k<=n;k++)
            for(int j=k-1;j>=1;j--)
                mx[i][j][k]=max(mx[i][j+1][k],f[1][i-1][j+1][k]);
    for(int i=1;i<=m;i++)
        for(int j=1;j<=n;j++)
            for(int k=j;k<=n;k++)
                f[0][i][j][k]=max(mx[i][j][k],f[0][i-1][j][k])+calc(i,j,k);
    mxx=f[0][0][0][0]; memset(f[1],~0x3f,sizeof(f[1]));
    for(int i=1;i<=m;i++)
    {
        for(int j=1;j<=n;j++)
            for(int k=j+2;k<=n;k++)
                f[1][i][j][k]=mxx+calc(i,j,k);
        for(int j=1;j<=n;j++)
            for(int k=j;k<=n;k++)
                mxx=max(mxx,f[0][i-1][j][k]);
    }
    memset(f[0],~0x3f,sizeof(f[0]));
    for(int i=1;i<=m;i++)
        for(int j=1;j<=n;j++)
            for(int k=j+2;k<=n;k++)
                f[0][i][j][k]=max(f[0][i-1][j][k],f[1][i-1][j][k])+calc(i,j,k)-calc(i,j+1,k-1);
    memset(f[1],~0x3f,sizeof(f[1]));
    for(int i=1;i<=m;i++)
        for(int j=1;j<=n;j++)
            for(int k=j+2;k<=n;k++)
                f[1][i][j][k]=f[0][i-1][j][k]+calc(i,j,k);
    mxx=f[0][0][0][0]; memset(f[0],~0x3f,sizeof(f[0]));
    for(int i=1;i<=m;i++)
    {
        for(int j=1;j<=n;j++)
            for(int k=j+2;k<=n;k++)
                f[0][i][j][k]=max(mxx,f[0][i-1][j][k])+calc(i,j,k)-calc(i,j+1,k-1);
        for(int j=1;j<=n;j++)
            for(int k=j;k<=n;k++)
                mxx=max(mxx,f[1][i-1][j][k]);
    }
    memset(f[1],~0x3f,sizeof(f[1]));
    for(int i=1;i<=m;i++)
        for(int j=1;j<=n;j++)
            for(int k=j+2;k<=n;k++)
                f[1][i][j][k]=max(f[1][i-1][j][k],f[0][i-1][j][k])+calc(i,j,k);
    ans=f[0][0][0][0]; memset(f[0],~0x3f,sizeof(f[0]));
    for(int i=1;i<=m;i++)
        for(int j=1;j<=n;j++)
            for(int k=j+2;k<=n;k++)
            {
                f[0][i][j][k]=max(f[0][i-1][j][k],f[1][i-1][j][k])+calc(i,j,k)-calc(i,j+1,k-1);
                ans=max(ans,f[0][i][j][k]);
            }
    printf("%d\n",ans);
    return 0;
}

 

转载于:https://www.cnblogs.com/LLTYYC/p/11538380.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值