Django - ORM - 进阶

本文详细介绍Django ORM的各种操作技巧,包括多表操作、基于对象的跨表查询、基于双下划线的跨表查询、聚合与分组查询等,并提供大量实战案例帮助读者快速掌握。
一、多表操作

创建模型

实例:我们来假定下面这些概念,字段和关系

作者模型:一个作者有姓名和年龄。

作者详细模型:把作者的详情放到详情表,包含生日,手机号,家庭住址等信息。作者详情模型和作者模型之间是一对一的关系(one-to-one)

出版商模型:出版商有名称,所在城市以及email。

书籍模型: 书籍有书名和出版日期,一本书可能会有多个作者,一个作者也可以写多本书,所以作者和书籍的关系就是多对多的关联关系(many-to-many);一本书只应该由一个出版商出版,所以出版商和书籍是一对多关联关系(one-to-many)。

模型建立如下:

from django.db import models

# Create your models here.


class Author(models.Model):
    nid = models.AutoField(primary_key=True)
    name=models.CharField( max_length=32)
    age=models.IntegerField()

    # 与AuthorDetail建立一对一的关系
    authorDetail=models.OneToOneField(to="AuthorDetail",on_delete=models.CASCADE)

class AuthorDetail(models.Model):

    nid = models.AutoField(primary_key=True)
    birthday=models.DateField()
    telephone=models.BigIntegerField()
    addr=models.CharField( max_length=64)

class Publish(models.Model):
    nid = models.AutoField(primary_key=True)
    name=models.CharField( max_length=32)
    city=models.CharField( max_length=32)
    email=models.EmailField()


class Book(models.Model):

    nid = models.AutoField(primary_key=True)
    title = models.CharField( max_length=32)
    publishDate=models.DateField()
    price=models.DecimalField(max_digits=5,decimal_places=2)

    # 与Publish建立一对多的关系,外键字段建立在多的一方
    publish=models.ForeignKey(to="Publish",to_field="nid",on_delete=models.CASCADE)
    # 与Author表建立多对多的关系,ManyToManyField可以建在两个模型中的任意一个,自动创建第三张表
    authors=models.ManyToManyField(to='Author',)

生成表如下:

 

注意事项:

  •  表的名称myapp_modelName,是根据 模型中的元数据自动生成的,也可以覆写为别的名称  
  • id 字段是自动添加的
  •  对于外键字段,Django 会在字段名上添加"_id" 来创建数据库中的列名
  •  这个例子中的CREATE TABLE SQL 语句使用PostgreSQL 语法格式,要注意的是Django 会根据settings 中指定的数据库类型来使用相应的SQL 语句。
  •  定义好模型之后,你需要告诉Django _使用_这些模型。你要做的就是修改配置文件中的INSTALL_APPSZ中设置,在其中添加models.py所在应用的名称。
  • 外键字段 ForeignKey 有一个 null=True 的设置(它允许外键接受空值 NULL),你可以赋给它空值 None 。

添加表记录

操作前先简单的录入一些数据:

publish表:

author表:

authordetail表:

一对多

1
2
3
4
5
6
方式 1 :
    publish_obj = Publish.objects.get(nid = 1 )
    book_obj = Book.objects.create(title = "金瓶眉" ,publishDate = "2012-12-12" ,price = 100 ,publish = publish_obj)
  
方式 2 :
    book_obj = Book.objects.create(title = "金瓶眉" ,publishDate = "2012-12-12" ,price = 100 ,publish_id = 1 )  

核心:book_obj.publish与book_obj.publish_id是什么? 

多对多

复制代码
    # 当前生成的书籍对象
    book_obj=Book.objects.create(title="追风筝的人",price=200,publishDate="2012-11-12",publish_id=1)
    # 为书籍绑定的做作者对象
    yuan=Author.objects.filter(name="yuan").first() # 在Author表中主键为2的纪录
    egon=Author.objects.filter(name="alex").first() # 在Author表中主键为1的纪录

    # 绑定多对多关系,即向关系表book_authors中添加纪录
    book_obj.authors.add(yuan,egon)    #  将某些特定的 model 对象添加到被关联对象集合中。   =======    book_obj.authors.add(*[])
复制代码

数据库表纪录生成如下:

book表 

book_authors表

核心:book_obj.authors.all()是什么?

多对多关系其它常用API:

1
2
3
book_obj.authors.remove()      # 将某个特定的对象从被关联对象集合中去除。    ======   book_obj.authors.remove(*[])
book_obj.authors.clear()       #清空被关联对象集合
book_obj.authors. set ()         #先清空再设置  

more

二、基于对象的跨表查询

一对多查询(Publish与Book)

正向查询(按字段:publish):

1
2
3
4
# 查询主键为1的书籍的出版社所在的城市
book_obj = Book.objects. filter (pk = 1 ).first()
# book_obj.publish 是主键为1的书籍对象关联的出版社对象
print (book_obj.publish.city)  

反向查询(按表名:book_set):

1
2
3
4
5
publish = Publish.objects.get(name = "苹果出版社" )
#publish.book_set.all() : 与苹果出版社关联的所有书籍对象集合
book_list = publish.book_set. all ()    
for book_obj in book_list:
        print (book_obj.title)

一对一查询(Author与AuthorDetail)

正向查询(按字段:authorDetail):

1
2
egon = Author.objects. filter (name = "egon" ).first()
print (egon.authorDetail.telephone)

反向查询(按表名:author):

1
2
3
4
5
# 查询所有住址在北京的作者的姓名
 
authorDetail_list = AuthorDetail.objects. filter (addr = "beijing" )
for obj in authorDetail_list:
      print (obj.author.name)

多对多查询(Author与Book)

正向查询(按字段:authors):

1
2
3
4
5
6
# 金瓶眉所有作者的名字以及手机号
 
book_obj = Book.objects. filter (title = "金瓶眉" ).first()
authors = book_obj.authors. all ()
for author_obj in authors:
      print (author_obj.name,author_obj.authorDetail.telephone)

反向查询(按表名:book_set):

1
2
3
4
5
6
# 查询egon出过的所有书籍的名字
 
     author_obj = Author.objects.get(name = "egon" )
     book_list = author_obj.book_set. all ()        #与egon作者相关的所有书籍
     for book_obj in book_list:
         print (book_obj.title)

注意:

你可以通过在 ForeignKey() 和ManyToManyField的定义中设置 related_name 的值来覆写 FOO_set 的名称。例如,如果 Article model 中做一下更改:

1
publish = ForeignKey(Book, related_name = 'bookList' )

那么接下来就会如我们看到这般:

1
2
3
4
# 查询 人民出版社出版过的所有书籍
 
publish = Publish.objects.get(name = "人民出版社" )
book_list = publish.bookList. all ()  # 与人民出版社关联的所有书籍对象集合
三、基于双下划的跨表查询

 Django 还提供了一种直观而高效的方式在查询(lookups)中表示关联关系,它能自动确认 SQL JOIN 联系。要做跨关系查询,就使用两个下划线来链接模型(model)间关联字段的名称,直到最终链接到你想要的model 为止。

''' 正向查询按字段,反向查询按表名小写用来告诉ORM引擎join哪张表 '''

一对一查询

# 查询alex的手机号
    
    # 正向查询
    ret=Author.objects.filter(name="alex").values("authordetail__telephone")

    # 反向查询
    ret=AuthorDetail.objects.filter(author__name="alex").values("telephone")

一对多查询

# 练习:  查询苹果出版社出版过的所有书籍的名字与价格(一对多)

    # 正向查询 按字段:publish

    queryResult=Book.objects
            .filter(publish__name="苹果出版社")
            .values_list("title","price")

    # 反向查询 按表名:book

    queryResult=Publish.objects
              .filter(name="苹果出版社")
              .values_list("book__title","book__price")

多对多查询

# 练习: 查询alex出过的所有书籍的名字(多对多)

    # 正向查询 按字段:authors:
    queryResult=Book.objects
            .filter(authors__name="yuan")
            .values_list("title")

    # 反向查询 按表名:book
    queryResult=Author.objects
              .filter(name="yuan")
              .values_list("book__title","book__price")

进阶练习(连续跨表)

# 练习: 查询人民出版社出版过的所有书籍的名字以及作者的姓名


    # 正向查询
    queryResult=Book.objects
            .filter(publish__name="人民出版社")
            .values_list("title","authors__name")
    # 反向查询
    queryResult=Publish.objects
              .filter(name="人民出版社")
              .values_list("book__title","book__authors__age","book__authors__name")


# 练习: 手机号以151开头的作者出版过的所有书籍名称以及出版社名称


    # 方式1:
    queryResult=Book.objects
            .filter(authors__authorDetail__telephone__regex="151")
            .values_list("title","publish__name")
    # 方式2:    
    ret=Author.objects
              .filter(authordetail__telephone__startswith="151")
              .values("book__title","book__publish__name")

related_name

反向查询时,如果定义了related_name ,则用related_name替换表名,例如:

publish = ForeignKey(Blog, related_name='bookList')

# 练习: 查询人民出版社出版过的所有书籍的名字与价格(一对多)

# 反向查询 不再按表名:book,而是related_name:bookList


    queryResult=Publish.objects
              .filter(name="人民出版社")
              .values_list("bookList__title","bookList__price")
四、聚合查询与分组查询

聚合

aggregate(*args, **kwargs)

1
2
3
4
# 计算所有图书的平均价格
     >>> from django.db.models import Avg
     >>> Book.objects. all ().aggregate(Avg( 'price' ))
     { 'price__avg' : 34.35 }

aggregate()QuerySet 的一个终止子句,意思是说,它返回一个包含一些键值对的字典。键的名称是聚合值的标识符,值是计算出来的聚合值。键的名称是按照字段和聚合函数的名称自动生成出来的。如果你想要为聚合值指定一个名称,可以向聚合子句提供它。

1
2
>>> Book.objects.aggregate(average_price = Avg( 'price' ))
{ 'average_price' : 34.35 }

如果你希望生成不止一个聚合,你可以向aggregate()子句中添加另一个参数。所以,如果你也想知道所有图书价格的最大值和最小值,可以这样查询:

1
2
3
>>> from django.db.models import Avg, Max , Min
>>> Book.objects.aggregate(Avg( 'price' ), Max ( 'price' ), Min ( 'price' ))
{ 'price__avg' : 34.35 , 'price__max' : Decimal( '81.20' ), 'price__min' : Decimal( '12.99' )}

分组

###################################--单表分组查询--#######################################################

查询每一个部门名称以及对应的员工数

emp:

id  name age   salary    dep
  alex  12   2000     销售部
  egon  22   3000     人事部
  wen   22   5000     人事部


sql语句:
select dep,Count(*) from emp group by dep;

ORM:
emp.objects.values("dep").annotate(c=Count("id")

###################################--多表分组查询--###########################


多表分组查询:

查询每一个部门名称以及对应的员工数


emp:

id  name age   salary   dep_id
  alex  12   2000       1
  egon  22   3000       2
  wen   22   5000       2


dep

id   name 
   销售部
   人事部



emp-dep:

id  name age   salary   dep_id   id   name 
  alex  12   2000       1      1    销售部
  egon  22   3000       2      2    人事部
  wen   22   5000       2      2    人事部


sql语句:
select dep.name,Count(*) from emp left join dep on emp.dep_id=dep.id group by dep.id

ORM:
dep.objetcs.values("id").annotate(c=Count("emp")).values("name","c")
class Emp(models.Model):
    name=models.CharField(max_length=32)
    age=models.IntegerField()
    salary=models.DecimalField(max_digits=8,decimal_places=2)
    dep=models.CharField(max_length=32)
    province=models.CharField(max_length=32)
annotate()为调用的QuerySet中每一个对象都生成一个独立的统计值(统计方法用聚合函数)。
总结 :跨表分组查询本质就是将关联表join成一张表,再按单表的思路进行分组查询。

查询练习

(1) 练习:统计每一个出版社的最便宜的书

1
2
3
publishList = Publish.objects.annotate(MinPrice = Min ( "book__price" ))
for publish_obj in publishList:
     print (publish_obj.name,publish_obj.MinPrice)

annotate的返回值是querySet,如果不想遍历对象,可以用上valuelist:

queryResult= Publish.objects
            .annotate(MinPrice=Min("book__price"))
            .values_list("name","MinPrice")
print(queryResult)
复制代码
'''


SELECT "app01_publish"."name", MIN("app01_book"."price")  AS "MinPrice" FROM "app01_publish" 
LEFT  JOIN "app01_book" ON ("app01_publish"."nid" = "app01_book"."publish_id") 
GROUP BY "app01_publish"."nid", "app01_publish"."name", "app01_publish"."city", "app01_publish"."email" 

(2) 练习:统计每一本书的作者个数

ret=Book.objects.annotate(authorsNum=Count('authors__name'))

(3) 统计每一本以py开头的书籍的作者个数:

 queryResult=Book.objects
           .filter(title__startswith="Py")
           .annotate(num_authors=Count('authors'))

(4) 统计不止一个作者的图书:

queryResult=Book.objects
          .annotate(num_authors=Count('authors'))
          .filter(num_authors__gt=1)

(5) 根据一本图书作者数量的多少对查询集 QuerySet进行排序:

1
Book.objects.annotate(num_authors = Count( 'authors' )).order_by( 'num_authors' )

(6) 查询各个作者出的书的总价格:

#   按author表的所有字段 group by
    queryResult=Author.objects
              .annotate(SumPrice=Sum("book__price"))
              .values_list("name","SumPrice") print(queryResult)
五、F查询与Q查询(F更新数据库得字段,Q构造复杂条件)

F查询

在上面所有的例子中,我们构造的过滤器都只是将字段值与某个常量做比较。如果我们要对两个字段的值做比较,那该怎么做呢?

Django 提供 F() 来做这样的比较。F() 的实例可以在查询中引用字段,来比较同一个 model 实例中两个不同字段的值。

1
2
3
4
# 查询评论数大于收藏数的书籍
 
    from django.db.models import F
    Book.objects. filter (commnetNum__lt = F( 'keepNum' ))

Django 支持 F() 对象之间以及 F() 对象和常数之间的加减乘除和取模的操作。

1
2
# 查询评论数大于收藏数2倍的书籍
     Book.objects. filter (commnetNum__lt = F( 'keepNum' ) * 2 )

修改操作也可以使用F函数,比如将每一本书的价格提高30元:

1
Book.objects. all ().update(price = F( "price" ) + 30 ) 

Q查询

filter() 等方法中的关键字参数查询都是一起进行“AND” 的。 如果你需要执行更复杂的查询(例如OR 语句),你可以使用对象

1
2
from   django.db.models  import   Q
Q(title__startswith = 'Py' )

Q 对象可以使用& 和| 操作符组合起来。当一个操作符在两个Q 对象上使用时,它产生一个新的Q 对象。

1
bookList = Book.objects. filter (Q(authors__name = "yuan" )|Q(authors__name = "egon" ))

等同于下面的SQL WHERE 子句:

1
WHERE name  = "yuan"   OR name  = "egon"

你可以组合& 和|  操作符以及使用括号进行分组来编写任意复杂的Q 对象。同时,Q 对象可以使用~ 操作符取反,这允许组合正常的查询和取反(NOT) 查询:

1
bookList = Book.objects. filter (Q(authors__name = "yuan" ) & ~Q(publishDate__year = 2017 )).values_list( "title" )

查询函数可以混合使用Q 对象和关键字参数。所有提供给查询函数的参数(关键字参数或Q 对象)都将"AND”在一起。但是,如果出现Q 对象,它必须位于所有关键字参数的前面。例如:

1
2
3
bookList = Book.objects. filter (Q(publishDate__year = 2016 ) | Q(publishDate__year = 2017 ),
                               title__icontains = "python"
                              )
# 查询是字段名称
# Book.objects.filter(Q(title='yuan')|Q(price='123'))

# Q() 查询放str,
search_connection = Q()
search_connection.connector = 'or'
for search_field in self.search_fields:
search_connection.children.append((search_field,key_words))

data_list = self.model.objects.all().filter(search_connection)
六、QuerySet

可切片

使用Python 的切片语法来限制查询集记录的数目 。它等同于SQL 的LIMIT 和OFFSET 子句。

1
>>> Entry.objects. all ()[:5]      # (LIMIT 5)
>>> Entry.objects.all()[5:10]    # (OFFSET 5 LIMIT 5)

不支持负的索引(例如Entry.objects.all()[-1])。通常,查询集 的切片返回一个新的查询集 —— 它不会执行查询。

可迭代

articleList=models.Article.objects.all()

for article in articleList:
    print(article.title)

惰性查询

查询集 是惰性执行的 —— 创建查询集不会带来任何数据库的访问。你可以将过滤器保持一整天,直到查询集 需要求值时,Django 才会真正运行这个查询。

1
2
3
4
5
6
queryResult=models.Article.objects. all () #  not  hits  database
 
print(queryResult) # hits  database
 
for  article  in  queryResult:
     print(article.title)    # hits  database

 一般来说,只有在“请求”查询集 的结果时才会到数据库中去获取它们。当你确实需要结果时,查询集 通过访问数据库来求值

缓存机制

每个查询集都包含一个缓存来最小化对数据库的访问。理解它是如何工作的将让你编写最高效的代码。

在一个新创建的查询集中,缓存为空。首次对查询集进行求值 —— 同时发生数据库查询 ——Django 将保存查询的结果到查询集的缓存中并返回明确请求的结果(例如,如果正在迭代查询集,则返回下一个结果)。接下来对该查询集 的求值将重用缓存的结果。

请牢记这个缓存行为,因为对查询集使用不当的话,它会坑你的。例如,下面的语句创建两个查询集,对它们求值,然后扔掉它们:

1
2
print([a.title  for  in  models.Article.objects. all ()])
print([a.create_time  for  in  models.Article.objects. all ()])

这意味着相同的数据库查询将执行两次,显然倍增了你的数据库负载。同时,还有可能两个结果列表并不包含相同的数据库记录,因为在两次请求期间有可能有Article被添加进来或删除掉。为了避免这个问题,只需保存查询集并重新使用它:

1
2
3
queryResult=models.Article.objects. all ()
print([a.title  for  in  queryResult])
print([a.create_time  for  in  queryResult])

何时查询集不会被缓存?

查询集不会永远缓存它们的结果。当只对查询集的部分进行求值时会检查缓存, 如果这个部分不在缓存中,那么接下来查询返回的记录都将不会被缓存。所以,这意味着使用切片或索引来限制查询集将不会填充缓存。

例如,重复获取查询集对象中一个特定的索引将每次都查询数据库:

1
2
3
>>> queryset  =  Entry.objects. all ()
>>>  print  queryset[ 5 # Queries the database
>>>  print  queryset[ 5 # Queries the database again

然而,如果已经对全部查询集求值过,则将检查缓存:

1
2
3
4
>>> queryset  =  Entry.objects. all ()
>>> [entry  for  entry  in  queryset]  # Queries the database
>>>  print  queryset[ 5 # Uses cache
>>>  print  queryset[ 5 # Uses cache

下面是一些其它例子,它们会使得全部的查询集被求值并填充到缓存中:

1
2
3
4
>>> [entry  for  entry  in  queryset]
>>>  bool (queryset)
>>> entry  in  queryset
>>>  list (queryset)

注:简单地打印查询集不会填充缓存。

queryResult=models.Article.objects.all()

print (queryResult)  #  hits database
print (queryResult)  #  hits database

exists()与iterator()方法

exists:

简单的使用if语句进行判断也会完全执行整个queryset并且把数据放入cache,虽然你并不需要这些 数据!为了避免这个,可以用exists()方法来检查是否有数据:

 if queryResult.exists():
    #SELECT (1) AS "a" FROM "blog_article" LIMIT 1; args=()
        print("exists...")

iterator:

当queryset非常巨大时,cache会成为问题。

处理成千上万的记录时,将它们一次装入内存是很浪费的。更糟糕的是,巨大的queryset可能会锁住系统 进程,让你的程序濒临崩溃。要避免在遍历数据的同时产生queryset cache,可以使用iterator()方法 来获取数据,处理完数据就将其丢弃。

复制代码
objs = Book.objects.all().iterator()
# iterator()可以一次只从数据库获取少量数据,这样可以节省内存
for obj in objs:
    print(obj.title)
#BUT,再次遍历没有打印,因为迭代器已经在上一次遍历(next)到最后一次了,没得遍历了
for obj in objs:
    print(obj.title)
复制代码

当然,使用iterator()方法来防止生成cache,意味着遍历同一个queryset时会重复执行查询。所以使 #用iterator()的时候要当心,确保你的代码在操作一个大的queryset时没有重复执行查询。

总结:

queryset的cache是用于减少程序对数据库的查询,在通常的使用下会保证只有在需要的时候才会查询数据库。 使用exists()和iterator()方法可以优化程序对内存的使用。不过,由于它们并不会生成queryset cache,可能 会造成额外的数据库查询。 

七、中介模型

处理类似搭配 pizza 和 topping 这样简单的多对多关系时,使用标准的ManyToManyField  就可以了。但是,有时你可能需要关联数据到两个模型之间的关系上。

例如,有这样一个应用,它记录音乐家所属的音乐小组。我们可以用一个ManyToManyField 表示小组和成员之间的多对多关系。但是,有时你可能想知道更多成员关系的细节,比如成员是何时加入小组的。

对于这些情况,Django 允许你指定一个中介模型来定义多对多关系。 你可以将其他字段放在中介模型里面。源模型的ManyToManyField 字段将使用through 参数指向中介模型。对于上面的音乐小组的例子,代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
from  django.db  import  models
 
class  Person(models.Model):
     name  =  models.CharField(max_length = 128 )
 
     def  __str__( self ):               # __unicode__ on Python 2
         return  self .name
 
class  Group(models.Model):
     name  =  models.CharField(max_length = 128 )
     members  =  models.ManyToManyField(Person, through = 'Membership' )
 
     def  __str__( self ):               # __unicode__ on Python 2
         return  self .name
 
class  Membership(models.Model):
     person  =  models.ForeignKey(Person)
     group  =  models.ForeignKey(Group)
     date_joined  =  models.DateField()
     invite_reason  =  models.CharField(max_length = 64 )

既然你已经设置好ManyToManyField 来使用中介模型(在这个例子中就是Membership),接下来你要开始创建多对多关系。你要做的就是创建中介模型的实例:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
>>> ringo  =  Person.objects.create(name = "Ringo Starr" )
>>> paul  =  Person.objects.create(name = "Paul McCartney" )
>>> beatles  =  Group.objects.create(name = "The Beatles" )
>>> m1  =  Membership(person = ringo, group = beatles,
...     date_joined = date( 1962 8 16 ),
...     invite_reason = "Needed a new drummer." )
>>> m1.save()
>>> beatles.members. all ()
[<Person: Ringo Starr>]
>>> ringo.group_set. all ()
[<Group: The Beatles>]
>>> m2  =  Membership.objects.create(person = paul, group = beatles,
...     date_joined = date( 1960 8 1 ),
...     invite_reason = "Wanted to form a band." )
>>> beatles.members. all ()
[<Person: Ringo Starr>, <Person: Paul McCartney>]

与普通的多对多字段不同,你不能使用add、 create和赋值语句(比如,beatles.members [...])来创建关系:

1
2
3
4
5
6
# THIS WILL NOT WORK
>>> beatles.members.add(john)
# NEITHER WILL THIS
>>> beatles.members.create(name = "George Harrison" )
# AND NEITHER WILL THIS
>>> beatles.members  =  [john, paul, ringo, george]

为什么不能这样做? 这是因为你不能只创建 Person和 Group之间的关联关系,你还要指定 Membership模型中所需要的所有信息;而简单的addcreate 和赋值语句是做不到这一点的。所以它们不能在使用中介模型的多对多关系中使用。此时,唯一的办法就是创建中介模型的实例。

 remove()方法被禁用也是出于同样的原因。但是clear() 方法却是可用的。它可以清空某个实例所有的多对多关系:

1
2
3
4
5
>>>  # Beatles have broken up
>>> beatles.members.clear()
>>>  # Note that this deletes the intermediate model instances
>>> Membership.objects. all ()
[]  
八、查询优化

表数据

class UserInfo(AbstractUser):
    """
    用户信息
    """
    nid = models.BigAutoField(primary_key=True)
    nickname = models.CharField(verbose_name='昵称', max_length=32)
    telephone = models.CharField(max_length=11, blank=True, null=True, unique=True, verbose_name='手机号码')
    avatar = models.FileField(verbose_name='头像',upload_to = 'avatar/',default="/avatar/default.png")
    create_time = models.DateTimeField(verbose_name='创建时间', auto_now_add=True)
 
    fans = models.ManyToManyField(verbose_name='粉丝们',
                                  to='UserInfo',
                                  through='UserFans',
                                  related_name='f',
                                  through_fields=('user', 'follower'))
 
    def __str__(self):
        return self.username
 
class UserFans(models.Model):
    """
    互粉关系表
    """
    nid = models.AutoField(primary_key=True)
    user = models.ForeignKey(verbose_name='博主', to='UserInfo', to_field='nid', related_name='users')
    follower = models.ForeignKey(verbose_name='粉丝', to='UserInfo', to_field='nid', related_name='followers')
 
class Blog(models.Model):
 
    """
    博客信息
    """
    nid = models.BigAutoField(primary_key=True)
    title = models.CharField(verbose_name='个人博客标题', max_length=64)
    site = models.CharField(verbose_name='个人博客后缀', max_length=32, unique=True)
    theme = models.CharField(verbose_name='博客主题', max_length=32)
    user = models.OneToOneField(to='UserInfo', to_field='nid')
    def __str__(self):
        return self.title
 
class Category(models.Model):
    """
    博主个人文章分类表
    """
    nid = models.AutoField(primary_key=True)
    title = models.CharField(verbose_name='分类标题', max_length=32)
 
    blog = models.ForeignKey(verbose_name='所属博客', to='Blog', to_field='nid')
 
class Article(models.Model):
 
    nid = models.BigAutoField(primary_key=True)
    title = models.CharField(max_length=50, verbose_name='文章标题')
    desc = models.CharField(max_length=255, verbose_name='文章描述')
    read_count = models.IntegerField(default=0)
    comment_count= models.IntegerField(default=0)
    up_count = models.IntegerField(default=0)
    down_count = models.IntegerField(default=0)
    category = models.ForeignKey(verbose_name='文章类型', to='Category', to_field='nid', null=True)
    create_time = models.DateField(verbose_name='创建时间')
    blog = models.ForeignKey(verbose_name='所属博客', to='Blog', to_field='nid')
    tags = models.ManyToManyField(
        to="Tag",
        through='Article2Tag',
        through_fields=('article', 'tag'),
)
 
 
class ArticleDetail(models.Model):
    """
    文章详细表
    """
    nid = models.AutoField(primary_key=True)
    content = models.TextField(verbose_name='文章内容', )
 
    article = models.OneToOneField(verbose_name='所属文章', to='Article', to_field='nid')
 
 
class Comment(models.Model):
    """
    评论表
    """
    nid = models.BigAutoField(primary_key=True)
    article = models.ForeignKey(verbose_name='评论文章', to='Article', to_field='nid')
    content = models.CharField(verbose_name='评论内容', max_length=255)
    create_time = models.DateTimeField(verbose_name='创建时间', auto_now_add=True)
 
    parent_comment = models.ForeignKey('self', blank=True, null=True, verbose_name='父级评论')
    user = models.ForeignKey(verbose_name='评论者', to='UserInfo', to_field='nid')
 
    up_count = models.IntegerField(default=0)
 
    def __str__(self):
        return self.content
 
class ArticleUpDown(models.Model):
    """
    点赞表
    """
    nid = models.AutoField(primary_key=True)
    user = models.ForeignKey('UserInfo', null=True)
    article = models.ForeignKey("Article", null=True)
    models.BooleanField(verbose_name='是否赞')
 
class CommentUp(models.Model):
    """
    点赞表
    """
    nid = models.AutoField(primary_key=True)
    user = models.ForeignKey('UserInfo', null=True)
    comment = models.ForeignKey("Comment", null=True)
 
 
class Tag(models.Model):
    nid = models.AutoField(primary_key=True)
    title = models.CharField(verbose_name='标签名称', max_length=32)
    blog = models.ForeignKey(verbose_name='所属博客', to='Blog', to_field='nid')
 
 
 
class Article2Tag(models.Model):
    nid = models.AutoField(primary_key=True)
    article = models.ForeignKey(verbose_name='文章', to="Article", to_field='nid')
    tag = models.ForeignKey(verbose_name='标签', to="Tag", to_field='nid')
View Code

select_related

简单使用

对于一对一字段(OneToOneField)和外键字段(ForeignKey),可以使用select_related 来对QuerySet进行优化。

select_related 返回一个QuerySet,当执行它的查询时它沿着外键关系查询关联的对象的数据。它会生成一个复杂的查询并引起性能的损耗,但是在以后使用外键关系时将不需要数据库查询。

简单说,在对QuerySet使用select_related()函数后,Django会获取相应外键对应的对象,从而在之后需要的时候不必再查询数据库了。

下面的例子解释了普通查询和select_related() 查询的区别。

查询id=2的文章的分类名称,下面是一个标准的查询:

1
2
3
4
5
# Hits the database.
article = models.Article.objects.get(nid = 2 )
 
# Hits the database again to get the related Blog object.
print (article.category.title)
'''
 
SELECT
    "blog_article"."nid",
    "blog_article"."title",
    "blog_article"."desc",
    "blog_article"."read_count",
    "blog_article"."comment_count",
    "blog_article"."up_count",
    "blog_article"."down_count",
    "blog_article"."category_id",
    "blog_article"."create_time",
     "blog_article"."blog_id",
     "blog_article"."article_type_id"
             FROM "blog_article"
             WHERE "blog_article"."nid" = 2; args=(2,)
 
SELECT
     "blog_category"."nid",
     "blog_category"."title",
     "blog_category"."blog_id"
              FROM "blog_category"
              WHERE "blog_category"."nid" = 4; args=(4,)
 
 
'''
View Code

如果我们使用select_related()函数:

1
2
3
4
5
6
7
articleList=models.Article.objects.select_related( "category" ). all ()
 
 
     for  article_obj  in  articleList:
         #  Doesn't hit the  database , because article_obj.category
         #  has been prepopulated  in  the previous query.
         print(article_obj.category.title)

SELECT
     "blog_article"."nid",
     "blog_article"."title",
     "blog_article"."desc",
     "blog_article"."read_count",
     "blog_article"."comment_count",
     "blog_article"."up_count",
     "blog_article"."down_count",
     "blog_article"."category_id",
     "blog_article"."create_time",
     "blog_article"."blog_id",
     "blog_article"."article_type_id",
 
     "blog_category"."nid",
     "blog_category"."title",
     "blog_category"."blog_id"
 
FROM "blog_article"
LEFT OUTER JOIN "blog_category" ON ("blog_article"."category_id" = "blog_category"."nid");
View Code

多外键查询

这是针对category的外键查询,如果是另外一个外键呢?让我们一起看下:

1
2
article=models.Article.objects.select_related( "category" ).get(nid=1)
print(article.articledetail)

 观察logging结果,发现依然需要查询两次,所以需要改为:

1
2
article=models.Article.objects.select_related( "category" , "articledetail" ).get(nid=1)
print(article.articledetail)

 或者:

article=models.Article.objects
             .select_related("category")
             .select_related("articledetail")
             .get(nid=1) # django 1.7 支持链式操作 print(article.articledetail)
SELECT
 
    "blog_article"."nid",
    "blog_article"."title",
    ......
 
    "blog_category"."nid",
    "blog_category"."title",
    "blog_category"."blog_id",
 
    "blog_articledetail"."nid",
    "blog_articledetail"."content",
    "blog_articledetail"."article_id"
 
   FROM "blog_article"
   LEFT OUTER JOIN "blog_category" ON ("blog_article"."category_id" = "blog_category"."nid")
   LEFT OUTER JOIN "blog_articledetail" ON ("blog_article"."nid" = "blog_articledetail"."article_id")
   WHERE "blog_article"."nid" = 1; args=(1,)
View Code

深层查询

1
2
3
4
# 查询id=1的文章的用户姓名
 
     article=models.Article.objects.select_related( "blog" ).get(nid=1)
     print(article.blog. user .username)

 依然需要查询两次:

SELECT
    "blog_article"."nid",
    "blog_article"."title",
    ......
 
     "blog_blog"."nid",
     "blog_blog"."title",
 
   FROM "blog_article" INNER JOIN "blog_blog" ON ("blog_article"."blog_id" = "blog_blog"."nid")
   WHERE "blog_article"."nid" = 1;
 
 
 
 
SELECT
    "blog_userinfo"."password",
    "blog_userinfo"."last_login",
    ......
 
FROM "blog_userinfo"
WHERE "blog_userinfo"."nid" = 1;
View Code

这是因为第一次查询没有query到userInfo表,所以,修改如下:

1
2
article=models.Article.objects.select_related( "blog__user" ).get(nid=1)
print(article.blog. user .username)
SELECT
 
"blog_article"."nid", "blog_article"."title",
......
 
 "blog_blog"."nid", "blog_blog"."title",
......
 
 "blog_userinfo"."password", "blog_userinfo"."last_login",
......
 
FROM "blog_article"
 
INNER JOIN "blog_blog" ON ("blog_article"."blog_id" = "blog_blog"."nid")
 
INNER JOIN "blog_userinfo" ON ("blog_blog"."user_id" = "blog_userinfo"."nid")
WHERE "blog_article"."nid" = 1;
View Code

总结

  1. select_related主要针一对一和多对一关系进行优化。
  2. select_related使用SQL的JOIN语句进行优化,通过减少SQL查询的次数来进行优化、提高性能。
  3. 可以通过可变长参数指定需要select_related的字段名。也可以通过使用双下划线“__”连接字段名来实现指定的递归查询。
  4. 没有指定的字段不会缓存,没有指定的深度不会缓存,如果要访问的话Django会再次进行SQL查询。
  5. 也可以通过depth参数指定递归的深度,Django会自动缓存指定深度内所有的字段。如果要访问指定深度外的字段,Django会再次进行SQL查询。
  6. 也接受无参数的调用,Django会尽可能深的递归查询所有的字段。但注意有Django递归的限制和性能的浪费。
  7. Django >= 1.7,链式调用的select_related相当于使用可变长参数。Django < 1.7,链式调用会导致前边的select_related失效,只保留最后一个。

prefetch_related()

对于多对多字段(ManyToManyField)和一对多字段,可以使用prefetch_related()来进行优化。

prefetch_related()和select_related()的设计目的很相似,都是为了减少SQL查询的数量,但是实现的方式不一样。后者是通过JOIN语句,在SQL查询内解决问题。但是对于多对多关系,使用SQL语句解决就显得有些不太明智,因为JOIN得到的表将会很长,会导致SQL语句运行时间的增加和内存占用的增加。若有n个对象,每个对象的多对多字段对应Mi条,就会生成Σ(n)Mi 行的结果表。

prefetch_related()的解决方法是,分别查询每个表,然后用Python处理他们之间的关系。

1
2
3
4
5
# 查询所有文章关联的所有标签
     article_obj=models.Article.objects. all ()
     for  in  article_obj:
 
         print(i.tags. all ())  #4篇文章: hits  database  5

改为prefetch_related:

1
2
3
4
5
# 查询所有文章关联的所有标签
     article_obj=models.Article.objects.prefetch_related( "tags" ). all ()
     for  in  article_obj:
 
         print(i.tags. all ())  #4篇文章: hits  database  2
SELECT "blog_article"."nid",
               "blog_article"."title",
               ......
 
FROM "blog_article";
 
 
 
SELECT
  ("blog_article2tag"."article_id") AS "_prefetch_related_val_article_id",
  "blog_tag"."nid",
  "blog_tag"."title",
  "blog_tag"."blog_id"
   FROM "blog_tag"
  INNER JOIN "blog_article2tag" ON ("blog_tag"."nid" = "blog_article2tag"."tag_id")
  WHERE "blog_article2tag"."article_id" IN (1, 2, 3, 4);
View Code
九、extra
extra(select=None, where=None, params=None, 
tables=None, order_by=None, select_params=None)

有些情况下,Django的查询语法难以简单的表达复杂的 WHERE 子句,对于这种情况, Django 提供了 extra() QuerySet修改机制 — 它能在 QuerySet生成的SQL从句中注入新子句

extra可以指定一个或多个 参数,例如 selectwhere or tables这些参数都不是必须的,但是你至少要使用一个!要注意这些额外的方式对不同的数据库引擎可能存在移植性问题.(因为你在显式的书写SQL语句),除非万不得已,尽量避免这样做

参数之select

The select 参数可以让你在 SELECT 从句中添加其他字段信息,它应该是一个字典,存放着属性名到 SQL 从句的映射。

queryResult=models.Article
           .objects.extra(select={'is_recent': "create_time > '2017-09-05'"})

结果集中每个 Entry 对象都有一个额外的属性is_recent, 它是一个布尔值,表示 Article对象的create_time 是否晚于2017-09-05.

练习:

复制代码
# in sqlite:
    article_obj=models.Article.objects
              .filter(nid=1)
              .extra(select={"standard_time":"strftime('%%Y-%%m-%%d',create_time)"})
              .values("standard_time","nid","title") print(article_obj) # <QuerySet [{'title': 'MongoDb 入门教程', 'standard_time': '2017-09-03', 'nid': 1}]>
复制代码

参数之where / tables

您可以使用where定义显式SQL WHERE子句 - 也许执行非显式连接。您可以使用tables手动将表添加到SQL FROM子句。

wheretables都接受字符串列表。所有where参数均为“与”任何其他搜索条件。

举例来讲:

queryResult=models.Article
           .objects.extra(where=['nid in (1,3) OR title like "py%" ','nid>2'])

 

十、整体插入

创建对象时,尽可能使用bulk_create()来减少SQL查询的数量。例如:

Entry.objects.bulk_create([
    Entry(headline="Python 3.0 Released"),
    Entry(headline="Python 3.1 Planned")
])

...更优于:

Entry.objects.create(headline="Python 3.0 Released")
Entry.objects.create(headline="Python 3.1 Planned")

注意该方法有很多注意事项,所以确保它适用于你的情况。

这也可以用在ManyToManyFields中,所以:

my_band.members.add(me, my_friend)

...更优于:

my_band.members.add(me)
my_band.members.add(my_friend)

...其中Bands和Artists具有多对多关联。

 

https://www.cnblogs.com/yuanchenqi/articles/8963244.html
https://www.cnblogs.com/yuanchenqi/articles/7570003.htm

十一、补充 - query
   # 查询沙河出版社 出版社的 书名 价格

    # ret = Publish.objects.filter(name='沙河出版社').values('book__title','book__price')

    # 还有一种写法:
    # ret = Book.objects.filter(publish__name='沙河出版社').values('title','price')
    #
    # print(ret)

    # print(ret.query)  # 查询单条语句的 sql
    """
    SELECT 
      "app01_book"."title", "app01_book"."price" 
    FROM "app01_publish" 
    LEFT OUTER JOIN "app01_book" ON ("app01_publish"."nid" = "app01_book"."publish_id")
    WHERE "app01_publish"."name" = 沙河出版社

    
    """
    """
    SELECT 
      "app01_book"."title", "app01_book"."price" 
    FROM "app01_book" 
    INNER JOIN "app01_publish" ON ("app01_book"."publish_id" = "app01_publish"."nid") 
    WHERE "app01_publish"."name" = 沙河出版社

    
    """

    """
    select 
      Book.title,Book.price 
    from Publish 
    inner join Book on Publish.pk = Book.publish_id 
    where publish.name = '沙河出版社' 
    
    
    """

 

十二、补充 - only defer  selected_related  prefetch_related (和性能相关得)
ORM补充:
    a. 需求: 只取某n列
        queryset=[ {},{}]
        models.User.objects.all().values( 'id','name')
        
        queryset=[ (),()]
        models.User.objects.all().values_list( 'id','name')
        
        queryset=[ obj,obj]
        result = models.User.objects.all().only('id','name','age')        # 只取
        # result = models.User.objects.all().defer('id','name','age')    # 排除
        for item in reuslt:
            print(item.id,item.name,item.age)
    b. 需求: 打印所有用户姓名以及部门名称
        
        class depart:
            title = ....
        
        
        class User:
            name = ...
            dp = FK(depart)
            
        # select * from user 
        # result = models.User.objects.all()
        # for item in result:
        #     print(item.name)
        
        # select * from user left join depart on user.dp_id = depart.id 
        # result = models.User.objects.all().selected_related('dp')   # 性能上提高
        # for item in result:
            #print(item.name,item.dp.title )

 

        - only
        - defer
        - seleted_related 
        - prefetch_related
    
        示例:
            class Depart(models.Model): 5个部门
                title = models.CharField(...)

            class User(models.Model):   10个用户
                name = models.CharField(...)
                email = models.CharField(...)
                dp = models.FK(Depart)

            1.以前的你:11次单表查询

                result = User.objects.all()
                for item in result:
                    print(item.name,item.dp.title)

            2. seleted_related,主动做连表查询(1次链表)(支持onetoone FK)

                result = User.objects.all().seleted_related('dp')
                for item in result:
                    print(item.name,item.dp.title)

                问题:如果链表多,性能越来越差。

            3. prefetch_related:2次单表查询 (还支持m2m)
                # select * from user ;
                # 通过python代码获取:dp_id = [1,2]
                # select * from depart where id in dp_id
                result = User.objects.all().prefetch_related('dp')
                for item in result:
                    print(item.name,item.dp.title)

        
        赠送:
            为什么要有FK; 如何没有FK,所有的数据就都得存在一张表里;浪费硬盘;降低了查询速度,插入有约束;
            但是:    
                数据量比较大,不会使用FK,允许出现数据冗余。因为单表查询速度快。

 

十三、orm操作,偏原生sql, using ... 选择数据库
        - select_related,连表操作,相当于主动做join
        - prefeth_related,多次单表操作,先查询想要的数据,然后构造条件,如:id=[1,2,3],再次查询其他表根据id做条件。
        - only
        - defer
        - F 更新数据库字段
        - Q 构造复杂条件
        - 通过ORM写偏原生SQL: 
            https://www.cnblogs.com/wupeiqi/articles/6216618.html
            - extra
                    Entry.objects.extra(select={'new_id': "select col from sometable where othercol > %s"}, select_params=(1,))
                    Entry.objects.extra(where=['headline=%s'], params=['Lennon'])
                    Entry.objects.extra(where=["foo='a' OR bar = 'a'", "baz = 'a'"])
                    Entry.objects.extra(select={'new_id': "select id from tb where id > %s"}, select_params=(1,), order_by=['-nid'])

            - raw
                # 执行原生SQL
                models.UserInfo.objects.raw('select * from userinfo')

                # 如果SQL是其他表时,必须将名字设置为当前UserInfo对象的主键列名
                models.UserInfo.objects.raw('select id as nid from 其他表')

                # 为原生SQL设置参数
                models.UserInfo.objects.raw('select id as nid from userinfo where nid>%s', params=[12,])
                
                name_map = {'first': 'first_name', 'last': 'last_name', 'bd': 'birth_date', 'pk': 'id'}
                Person.objects.raw('SELECT * FROM some_other_table', translations=name_map)
                
            - 原生SQL
                
                from django.db import connection, connections
                cursor = connection.cursor()  # cursor = connections['default'].cursor()
                cursor.execute("""SELECT * from auth_user where id = %s""", [1])
                row = cursor.fetchone() # fetchall()/fetchmany(..)
            PS: 选择数据库
                queryset = models.Course.objects.using('default').all()

 

转载于:https://www.cnblogs.com/alice-bj/p/9195846.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值