时间限制:1秒 空间限制:32768K
题目描述
有 n 个学生站成一排,每个学生有一个能力值,牛牛想从这 n 个学生中按照顺序选取 k 名学生,要求相邻两个学生的位置编号的差不超过 d,使得这 k 个学生的能力值的乘积最大,你能返回最大的乘积吗?
输入描述:
每个输入包含 1 个测试用例。每个测试数据的第一行包含一个整数 n (1 <= n <= 50),表示学生的个数,接下来的一行,包含 n 个整数,按顺序表示每个学生的能力值 ai(-50 <= ai <= 50)。接下来的一行包含两个整数,k 和 d (1 <= k <= 10, 1 <= d <= 50)。
输出描述:
输出一行表示最大的乘积。
示例1
输入
3 7 4 7 2 50
输出
49
思路:动态规划,DP_MIN[i][j],DP_MAX[i][j]表示以第i个学生为结尾前i个学生中取到j个值的最小(大)值,这道题由于存在正负数交叉,我这里分别计算了两组
最大最小值,递推关系式为:DP_MIN[j][i] = min(DP_MIN[m][i-1]*students[j-1],DP_MAX[m][i-1]*students[j-1],DP_MIN[j][i]);最大同样。 其中m有取值限制m >= j-d && m >= i-1;
需要注意一些越界问题,比如k个值的乘积不可能在k名学生以前就取到,还有一个测试用例结果超过了INT_MAX所以我这里使用了long long。。。好蛋疼的题目。代码写得也挺丑陋的。。。
#include<iostream>
#include<vector>
#include<algorithm>
using namespace std;
int main(){
int num,k,d;
cin>>num;
vector<int> students;
for(int i = 0; i<num; ++i){
int temp;
cin>>temp;
students.push_back(temp);
}
cin>>k>>d;
vector<vector<long long>> DP_MIN(num+1,vector<long long>(k+1,100000));//最大最小初始化
vector<vector<long long>> DP_MAX(num+1,vector<long long>(k+1,-100000));
for(int i = 1; i<=num; ++i){ //以任何一个值结尾并且长度为1的乘积最值都是它本身
DP_MIN[i][1] = students[i-1];
DP_MAX[i][1] = students[i-1];
}
for(int i = 2; i <= k; ++i){ //i这里其实指的是取到的数字数量
for(int j = i; j <= num ;++j){ //注意j的起始值,k个值的乘积不可能在k名学生以前就取到
for(int m = j-1; m >= j-d && m >= i-1 ; --m){ //递推关系,注意m取值
DP_MIN[j][i] = min(DP_MIN[m][i-1]*students[j-1],DP_MIN[j][i]);
DP_MIN[j][i] = min(DP_MAX[m][i-1]*students[j-1],DP_MIN[j][i]);
DP_MAX[j][i] = max(DP_MIN[m][i-1]*students[j-1],DP_MAX[j][i]);
DP_MAX[j][i] = max(DP_MAX[m][i-1]*students[j-1],DP_MAX[j][i]);
}
}
}
long long res = 0;
for(int i = k; i <= num; ++i){ //遍历所有长度为k的最值,取得最大值。
res = max(res,DP_MAX[i][k]);
}
cout<<res;
return 0;
}