东北育才 day6

大逃亡(escape)

【问题描述】

给出数字N(1<=N<=10000)、X(1<=X<=1000)、Y(1<=Y<=1000)代表有N个敌人分布在一个X行Y列的矩阵上,矩形的行号从0到X-1、列号从0到Y-1。再给出四个数字x1,y1,x2,y2分别代表你要从起点(x1,y1)移动到目标点(x2,y2)。在移动的过程中你当然希望离敌人的距离的最小值最大化,现在请求出这个值最大可以为多少?以及在这个前提下,你最少要走多少步才可以到目标点。

注意这里距离的定义为两点的曼哈顿距离,即某两个点的坐标分为(a,b),(c,d),那么它们的距离为|a-c|+|b-d|。

【输入格式】

第一行3个整数为N,X,Y

第二行4个整数为x1,y1,x2,y2

下面将有N行,为N个敌人所在的坐标。

【输出格式】

在一行内输出你离敌人的距离及在这个距离的限制下,你到目标点最少要移动多少步。

【样例输入】

2 5 6

0 0 4 0

2 1

2 3

【样例输出】

2 14

 

由最大化最小值,我们可以想到二分。

然后每次距离需要预处理出来,我们很容易想到bfs。

二分答案检查可行性,最后得出最优解。

 

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
using namespace std;
bool mark[1010][1010];
int map[1010][1010];
int heng[5000010],shu[5000010];
int bs[1010][1010];
int n,m,k,head,tail,qx,qy,zx,zy;
int dx[4]={0,0,1,-1};
int dy[4]={1,-1,0,0};
void bfs()
{
    int i,nx,ny,xx,yy,p;
    while(head<=tail)
    {
        xx=heng[head];
        yy=shu[head];
        head++;
        for(p=0;p<4;p++)
        {
            nx=xx+dx[p];
            ny=yy+dy[p];
            if(nx<1||nx>n||ny<1||ny>m)   
            continue;
            if(!mark[nx][ny])
            {
                mark[nx][ny]=1;
                map[nx][ny]=map[xx][yy]+1;
                tail++;
                heng[tail]=nx;
                shu[tail]=ny;
            }
        }   
    }
}
bool check(int mid)
{
    int i,xx,yy,nx,ny,p;
    head=1;
    tail=1;
    heng[1]=qx;
    shu[1]=qy;
    memset(mark,0,sizeof(mark));
    memset(bs,127,sizeof(bs));
    mark[qx][qy]=1;
    bs[qx][qy]=0;
    while(head<=tail)
    {
        xx=heng[head];
        yy=shu[head];
        head++;
        for(p=0;p<4;p++)
        {
            nx=xx+dx[p];
            ny=yy+dy[p];
            if(nx<1||nx>n||ny<1||ny>m||map[nx][ny]<mid)  
            continue;
            if(!mark[nx][ny])
            {
                mark[nx][ny]=1;
                bs[nx][ny]=bs[xx][yy]+1;
                tail++;
                heng[tail]=nx;
                shu[tail]=ny;
            }
        }
    }
    if(mark[zx][zy])  
    return 1;
    else
    return 0;
}
int main()
{
    //freopen("escape.in","r",stdin);
    //freopen("escape.out","w",stdout);
    int i,a,b,l=0,r,mid;
    scanf("%d%d%d",&k,&n,&m);
    head=1;
    tail=0;
    scanf("%d%d%d%d",&qx,&qy,&zx,&zy);
    qx++;
    qy++;
    zx++;
    zy++;
    for(i=1;i<=k;i++)
    {
        scanf("%d%d",&a,&b);
        a++;
        b++;
        tail++;
        heng[tail]=a;
        shu[tail]=b;
        mark[a][b]=1;
    }
    bfs();
    r=map[qx][qy];
    while(l+1<r)
    {
        mid=(l+r)>>1;
        if(check(mid))  
        l=mid;
        else
        r=mid;
    }
    if(check(r)) 
    {
        cout<<r<<" "<<bs[zx][zy];
    }
    else
    {
        check(l);
        cout<<l<<" "<<bs[zx][zy];
    }
}
View Code

 

转载于:https://www.cnblogs.com/ashon37w/p/7081142.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值