整数的任意拆分问题(不允许重复)
问题:输入两个整数n 和m,从数列1,2,3.......n 中随意取几个数(不许重复), 使其和等于m (m<=1+2+...n),要求将其中所有的可能组合列出来.
分析:记整数p可以用1,2...q的所有不重复数之和表示的组合为C(p,q),则C(p,q)可以表示为以下的组合:
{q} + C(p-q,q-1) (如果q<=m)
或者
C(p,q-1)
即要么包含q,要么不包含q。
另外有C(0,K)={}, C(K,0)无解(K>0)
因此可以使用动态规划的方法解决。
实现:
import java.util.ArrayList;
import java.util.List;
/**
*
* @author ljs 2011-05-11
*
* 输入两个整数n 和m,从数列1,2,3.......n 中随意取几个数(不许重复), 使其和等于m (m<=1+2+...n),要求将其中所有的可能组合列出来.
*
*/
public class SumPartition {
private Object[][] C;
private int m;
private int n;
public void sumPartitions(int m,int n){
this.m = m;
this.n = n;
C = new Object[m+1][n+1];
//C[1][1]=new int[][]{{1}};
//do the loop column by column
for(int col=1;col<=n;col++) {
for(int row=1;row<=m;row++){
List<int[]> combines = new ArrayList<int[]>();
//calculate {n} U C(row-col,col-1)
if(col<row){
if(col>1){//when col==1, there is no solution
Object[] C0 =(Object[])C[row-col][col-1];
for(int i=0;i<C0.length;i++){
int[] C0item = (int[])C0[i];
//add n
int[] cElementNew = new int[C0item.length+1];
System.arraycopy(C0item, 0, cElementNew, 0, C0item.length);
cElementNew[C0item.length] = col;
combines.add(cElementNew);
}
}
}else if(col==row){
combines.add(new int[]{col});
}
//calculate C(row,col-1)
//note: C(0,K) = {}; C(K,0) has no solution when K>0
if(col>1){
Object[] C1 =(Object[])C[row][col-1];
for(int i=0;i<C1.length;i++){
int[] C11 = (int[])C1[i];
combines.add(C11);
}
}
C[row][col] = combines.toArray();
}
}
}
public void printSize(){
Object[] ci = (Object[])C[m][n];
System.out.println("m:"+ m + ",n=" + n + " size:" + ci.length);
}
public void prettyPrint(){
//for(int i=0;i<=m;i++){
Object[] ci = (Object[])C[m][n];
System.out.print("{");
for(int j=0;j<ci.length;j++){
int[] cij = (int[])ci[j];
System.out.print("{");
for(int k=0;k<cij.length-1;k++)
System.out.print(cij[k] + ",");
if(cij.length-1>=0)
System.out.print(cij[cij.length-1]);
System.out.print("}");
}
System.out.print("}");
//System.out.print(" m:"+ m + ",n=" + n + " size:" + ci.length);
System.out.println();
//}
}
public static void main(String[] args) {
SumPartition sp = new SumPartition();
int m=6;
int n=5;
sp.sumPartitions(m,n);
sp.printSize();
sp.prettyPrint();
m = 20;
n=10;
sp.sumPartitions(m,n);
sp.printSize();
}
}
测试输出:
m:6,n=5 size:3
{{1,5}{2,4}{1,2,3}}
m:20,n=10 size:31
本实现中的row相当于上面讨论中的p, col相当于q。该算法的时间复杂度为O(mn)。