原题:
校门外有很多树,有苹果树,香蕉树,有会扔石头的,有可以吃掉补充体力的……
如今学校决定在某个时刻在某一段种上一种树,保证任一时刻不会出现两段相同种类的树,现有两个操作:
K=1,K=1,读入l、r表示在区间[l,r]中种上一种树,每次操作种的树的种类都不同
K=2,读入l,r表示询问l~r之间能见到多少种树
(l,r>0)
输入样例:
5 4
1 1 3
2 2 5
1 2 4
2 3 5
样例输出:
1
2
曾经,校门外的树是几行的暴力染色
然后,校门外的树是长长的线段树
后来啊,校门外的树是几行的树状数组
判断询问的区间与之前多少个已知区间有交集
如果将之前的已知区间双关键字排序
再做二分查找
很快就能得到有交集的区间数量
那么现在只有两个事情要办:
1、排序,要让已知的区间始终是有序的
2、查找,以logn的效率迅速找有交集的已知区间
可以用来联系线段树,也能作为树状数组的尝试
步骤(原来在写线段树的,写到一半突然发现树状数组可解,于是直接删代码写树状数组):
1:如果当前根不为空:得到一个区间信息,从根开始,如果该区间比根小,则把左子节点当成根做下一次操作的根,比根大则把右子节点作为下一次操作的根
2:如果当前根为空:愉快地将该区间信息放在根位置上
3:返回第一步
我的程序:
1 #include <stdio.h> 2 int h[50010],t[50010]; 3 int n,k; 4 void add(int a[],int k) 5 { 6 while(k<=n){ 7 a[k]++; 8 k+=k&(-k); 9 } 10 } 11 int search(int a[],int k) 12 { 13 int tot=0; 14 while(k){ 15 tot+=a[k]; 16 k-=k&(-k); 17 } 18 return tot; 19 } 20 int main() 21 { 22 23 scanf("%d%d",&n,&k); 24 for(int i=1;i<=k;i++) 25 { 26 int a,b,c; 27 scanf("%d%d%d",&a,&b,&c); 28 if(a==1){ 29 add(h,b); 30 add(t,c); 31 } 32 else printf("%d\n",search(h,c)-search(t,b-1)); 33 } 34 }
PS:博客园第一文