欧拉定理证明: https://www.cnblogs.com/wangxiaodai/p/9758242.html
阶乘的逆元:
记 f[i] = i! mod p,
g[i] = (i!)−1 mod p
容易发现 g[i] = g[i]+1∗(i +1)
i−1 = f[i]−1∗g[i]
只需要算出 f[n],然后求出 f[n] 的逆元 g[n],然后递推即可。
欧拉定理证明: https://www.cnblogs.com/wangxiaodai/p/9758242.html
阶乘的逆元:
记 f[i] = i! mod p,
g[i] = (i!)−1 mod p
容易发现 g[i] = g[i]+1∗(i +1)
i−1 = f[i]−1∗g[i]
只需要算出 f[n],然后求出 f[n] 的逆元 g[n],然后递推即可。
转载于:https://www.cnblogs.com/minun/p/11367417.html