算法第二章上机实践报告
网安1802 刘浩
①实践题目:改写二分搜索算法
②题目描述:
7-2 改写二分搜索算法 (20 分)
题目来源:《计算机算法设计与分析》,王晓东
设a[0:n-1]是已排好序的数组,请改写二分搜索算法,使得当x不在数组中时,返回小于x的最大元素位置i和大于x的最小元素位置j。当搜索元素在数组中时,i和j相同,均为x在数组中的位置。
输入格式:
输入有两行:
第一行是n值和x值; 第二行是n个不相同的整数组成的非降序序列,每个整数之间以空格分隔。
输出格式:
输出小于x的最大元素的最大下标i和大于x的最小元素的最小下标j。当搜索元素在数组中时,i和j相同。 提示:若x小于全部数值,则输出:-1 0 若x大于全部数值,则输出:n-1的值 n的值
输入样例:
在这里给出一组输入。例如:
6 5
2 4 6 8 10 12
输出样例:
在这里给出相应的输出。例如:
1 2
③算法描述:
以分治思想为指导的二分搜索算法,在二分搜索法的基础上,利用退出循环时所处的状态,输出所给数字的相邻数字。
#include<iostream>
using namespace std;
int main()
{
int n,target,mid,left,right;
cin >> n;
cin >> target;
int*a = new int [n];
for(int i = 0;i < n;i++)
{
cin >> a[i];
}
left = 0;
right = n - 1;
while(left <= right)
{
mid = (left + right)/2;
if(a[mid] == target)
{
cout <<mid<<" "<<mid<<endl;
break;
}
else if(target > a[mid])
left = mid + 1;
else
right = mid - 1;
}
if(left > right)
cout << right <<" "<< left ;
}
④算法时间及空间复杂度分析(要有分析过程)
时间复杂度(二分搜索查找算法):O(logn)
空间复杂度:O(1) (借助的临时变量与N的规模无关)
⑤心得体会(对本次实践收获及疑惑进行总结)
在本次实践课中,经老师指点,得到两处较大的收获,一是在于循环与嵌套不要同时使用,这会大大降低算法的可读性以及使语句变得复杂。二是语句的精简,有很多语句虽然有助于逻辑上帮助理解,但实则放在整个算法中是多余的,要减少无用语句的冗杂。另外,还需注意退出循环时的临界条件,这是二分搜索的关键,将问题划分到最小便停止。