计算机二级c语言考试基础知识
1 公共基础知识 第一章 数据结构与算法 1.1 算法 算法 :是指解题方案的准确而完整的描述。 算法不等于程序,也不等计算机方法,程序 的编制不可能优于算法的设计。 算法的基本特征:是一组严谨地定义运算顺 序的规则,每一个规则都是有效的,是明确 的,此顺序将在有限的次数下终止。特征包 括: (1)可行性; (2)确定性,算法中每一步骤都必须有明确 定义,不充许有模棱两可的解释,不允许有 多义性; (3)有穷性,算法必须能在有限的时间内做 完,即能在执行有限个步骤后终止,包括合 理的执行时间的含义; (4)拥有足够的情报。 算法的基本要素:一是对数据对象的运算和 操作;二是算法的控制结构。 指令系统:一个计算机系统能执行的所有指 令的集合。 基本运算包括:算术运算、逻辑运算、关系 运算、数据传输。 算法的控制结构: 顺序结构、选择结构、循 环结构 。 算法基本设计方法:列举法、归纳法、递推、 递归、减斗递推技术、回溯法。 算法复杂度: 算法时间复杂度 和 算法空间复 杂度 。算法时间复杂度是指执行算法所需要 的计算工作量。算法空间复杂度是指执行这 个算法所需要的内存空间。 1.2 数据结构的基本基本概念 数据结构研究的三个方面: (1)数据集合中各数据元素之间所固有的逻 辑关系,即 数据的逻辑结构 ; (2)在对数据进行处理时,各数据元素在计 算机中的存储关系,即 数据的存储结构 ; (3)对各种数据结构进行的运算。 数据结构是指相互有关联的数据元素的集合。 数据的逻辑结构包含: (1)表示数据元素的信息; (2)表示各数据元素之间的前后件关系。 数据的存储结构有顺序、链接、索引等。 线性结构条件: (1)有且只有一个根结点;(2 )每一个结 点最多有一个前件,也最多有一个后件。 非线性结构:不满足线性结构条件的数据结 构。 1.3 线性表及其顺序存储结构 线性表 是由一组数据元素构成,数据元素的 位置只取决于自己的序号,元素之间的相对 位置是线性的。 在复杂线性表中,由若干项数据元素组成的 数据元素称为 记录 ,而由多个记录构成的线 性表又称为 文件 。 非空线性表的结构特征: (1)且只有一个根结点 a1,它无前件; (2)有且只有一个终端结点 an,它无后件; (3)除根结点与终端结点外,其他所有结点 有且只有一个前件,也有且只有一个后件。 结点个数 n 称为 线性表的长度 ,当 n=0 时, 称为 空表 。 线性表的顺序存储结构具有以下两个基本特 点: (1)线性表中所有元素的所占的存储空间是 连续的; (2)线性表中各数据元素在存储空间中是按 逻辑顺序依次存放的。 ai 的存储地址为: ADR(ai)=ADR(a1)+(i-1)k,,ADR(a1) 为 第一个元素的地址,k 代表每个元素占的字 节数。 顺序表的运算:插入、删除。 1.4 栈和队列 栈 是限定在一端进行插入与删除的线性表, 允许插入与删除的一端称为栈顶,不允许插 入与删除的另一端称为栈底。 栈按照“先进后出” (FILO )或“ 后进先出” (LIFO)组织数据,栈具有记忆作用。用 top 表示栈顶位置,用 bottom 表示栈底。 栈的基本运算:(1)插入元素称为入栈运算; (2)删除元素称为退栈运算;(3)读栈顶 元素是将栈顶元素赋给一个指定的变量,此 时指针无变化。 队列 是指允许在一端(队尾)进入插入,而 在另一端(队头)进行删除的线性表。Rear 指针指向队尾,front 指针指向队头。 队列是“先进行出” (FIFO )或“后进后出” (LILO)的线性表。2 队列运算包括(1)入队运算:从队尾插入一 个元素;(2)退队运算:从队头删除一个元 素。 循环队列:s=0 表示队列空,s=1 且 front=rear 表示队列满 1.5 线性链表 数据结构中的每一个结点对应于一个存储单 元,这种存储单元称为存储结点,简称 结点 。 结点由两部分组成:(1)用于存储数据元素 值,称为 数据域 ;(2)用于存放指针,称为 指针域 ,用于指向前一个或后一个结点。 在链式存储结构中,存储数据结构的存储空 间可以不连续,各数据结点的存储顺序与数 据元素之间的逻辑关系可以不一致,而数据 元素之间的逻辑关系是由指针域来确定的。 链式存储方式即可用于表示线性结构,也可 用于表示非线性结构。 线性链表,HEAD 称为头指针, HEAD=NULL(或 0 )称为 空表 ,如果是两 指针: 左指针 (Llink)指向前件结点, 右指 针 (Rlink)指向后件结点。 线性链表的基本运算:查找、插入、删除。 1.6 树与二叉树 树是一种简单的非线性结构,所有元素之间 具有明显的层次特性。 在树结构中,每一个结点只有一个前件,称 为父结点,没有前件的结点只有一个,称为 树的根结点,简称树的根。每一个结点可以 有多个后件,称为该结点的子结点。没有后 件的结点称为叶子结点。 在树结构中,一个结点所拥有的后件的个数 称为该结点的度,所有结点中最大的度称为 树的度。树的最大层次称为树的深度。 二叉树 的特点:(1 )非空二叉树只有一个 根结点;(2)每一个结点最多有两棵子树, 且分别称为该结点的左子树与右子树。 二叉树的基本性质: (1)在二叉树的第 k 层上,最多有 2k- 1(k≥1)个结点; (2)深度为 m 的二叉树最多有 2m-1 个结 点; (3)度为 0 的结点(即叶子结点)总是比 度为 2 的结点多一个; (4)具有 n 个结点的二叉树,其深度至少 为[log2n]+1,其中[log2n]表示取 log2n 的 整数部分; (5)具有 n 个结点的完全二叉树的深度为 [log2n]+1; (6)设完全二叉树共有 n 个结点。如果从 根结点开始,按层序(每一层从左到右)用 自然数 1,2,….n 给结点进行编号 (k=1,2….n ) ,有以下结论: ①若 k=1 ,则该结点为根结点,它没有父结 点;若 k>1 ,则该结点的父结点编号为 INT(k/2); ②若 2k≤n,则编号为 k 的结点的左子结点 编号为 2k;否则该结点无左、右子结点; ③若 2k+1≤n,则编号为 k 的结点的右子结 点编号为 2k+1 ;否则该结点无右子结点。 满二叉树 是指除最后一层外,每一层上的所 有结点有两个子结点,则 k 层上有 2k-1 个 结点深度为 m 的满二叉树有 2m-1 个结点。 完全二叉树 是指除最后一层外,每一层上的 结点数均达到最大值,在最后一层上只缺少 右边的若干结点。 二叉树存储结构采用 链式存储结构 ,对于满 二叉树与完全二叉树可以按层序进行顺序存 储。 二叉树的遍历: (1) 前序遍历 (DLR ) ,首先访问根结点, 然后遍历左子树,最后遍历右子树; (2) 中序遍历 (LDR ) ,首先遍历左子树, 然后访问根结点,最后遍历右子树; (3) 后序遍历 (LRD )首先遍历左子树, 然后访问遍历右子树,最后访问根结点。 1.7 查找技术 顺序查找的使用情况:线性表为无序表;表采用链式存储结构。 二分法查找只适用于 顺序存储的有序表 ,对 于长度为 n 的有序线性表,最坏情况只需比 较 log2n 次。 1.8