题目链接:a + b Problem
首先,如果没有奇怪的方格这个条件的话……就是网络流板子题了直接取最大值加起来就好了……
然后,我们来考虑一下奇怪的方格怎么处理。其实这是网络流板子。
我们考虑最小个模型,对于每个点\(u\),从\(S\)往\(u\)连一条流量为\(w_i\)的边,从\(u\)往\(T\)连一条流量为\(b_i\)的边。如果我们割掉了\(S\)和\(u\)之间的边,就是这个点染了黑色;如果我们割掉了\(u\)和\(T\)之间的边,就是这个点选了白色。
然后对于一个点\(i\),我们新建一个点\(i'\),并且从\(i'\)往\(i\)连一条流量为\(p_i\)的边。若\(i\)选黑色,\(j\)选白色会导致\(i\)成为奇怪的方格,那么就从\(j\)往\(i'\)连一条流量为\(\infty\)的边。这样的话,如果\(j\)选了白色,那么\(i\)要么选白色,要么变得奇怪。
然而这样边数是\(O(n^2)\)级别的,需要优化。由于每次都是给一段区间内的点连边,我们可以建一棵线段树来优化连边。由于要求\(j<i\),那么把线段树可持久化一下就好了。每次记得从上一个节点连一条流量为\(\infty\)的边过来。
还有就是算好点数和边数……数组不要开小了……
下面贴代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define File(s) freopen(s".in","r",stdin),freopen(s".out","w",stdout)
#define INF 2147483647
#define maxn 100010
#define maxm 1000010
#define N 5010
using namespace std;
typedef long long llg;
struct data{
int a,b,w,l,r,p;
}s[maxn];
int S,T,tol,n,d[maxn],ld,rt[N],L,R,z;
int hd[maxn],nt[maxm],to[maxm],c[maxm],tt=1;
int dep[maxn],le[maxn],ri[maxn],ans;
void link(int x,int y,int z){
if(!x || !y) return;
to[++tt]=y;nt[tt]=hd[x];hd[x]=tt;
to[++tt]=x;nt[tt]=hd[y];hd[y]=tt;
c[tt-1]=z; c[tt]=0;
}
int build(int u,int l,int r){
int x=++tol,mid=(l+r)>>1;
le[x]=le[u],ri[x]=ri[u];
link(u,x,INF); link(z,x,INF);
if(l!=r){
if(L<=mid) le[x]=build(le[u],l,mid);
else ri[x]=build(ri[u],mid+1,r);
}
return x;
}
void query(int u,int l,int r){
if(!u) return; int mid=(l+r)>>1;
if(L<=l && r<=R){link(u,z,INF);return;}
if(L<=mid) query(le[u],l,mid);
if(R>mid) query(ri[u],mid+1,r);
}
bool bfs(){
for(int i=1;i<=tol;i++) dep[i]=-1;
int ld=0,rd=0; dep[d[rd++]=S]=1;
while(ld!=rd){
int u=d[ld++];
for(int i=hd[u],v;v=to[i],i;i=nt[i])
if(c[i] && dep[v]==-1) dep[v]=dep[u]+1,d[rd++]=v;
}
return dep[T]!=-1;
}
int dfs(int u,int now){
if(!now) return 0;
if(u==T) return now;
int low=0,res;
for(int i=hd[u],v;v=to[i],i;i=nt[i])
if(c[i] && dep[v]==dep[u]+1){
res=dfs(v,min(now,c[i])); low+=res;
c[i]-=res; c[i^1]+=res; now-=res;
}
if(!low) dep[u]=-1;
return low;
}
int main(){
File("a");
scanf("%d",&n); d[++ld]=1<<30;
for(int i=1;i<=n;i++){
scanf("%d %d %d",&s[i].a,&s[i].b,&s[i].w);
scanf("%d %d %d",&s[i].l,&s[i].r,&s[i].p);
d[++ld]=s[i].a;
}
sort(d+1,d+ld+1); ld=unique(d+1,d+ld+1)-d-1;
for(int i=1;i<=n;i++){
s[i].a=lower_bound(d+1,d+ld+1,s[i].a)-d;
s[i].l=lower_bound(d+1,d+ld+1,s[i].l)-d;
s[i].r=upper_bound(d+1,d+ld+1,s[i].r)-d-1;
}
S=2*n+1; tol=T=S+1;
for(int i=1;i<=n;i++){
link(S,i,s[i].w),link(i,T,s[i].b);
link(i+n,i,s[i].p); ans+=s[i].w+s[i].b;
}
for(int i=1;i<=n;i++){
L=s[i].l; R=s[i].r; z=i+n;
if(L<=R) query(rt[i-1],1,ld);
L=s[i].a,z=i,rt[i]=build(rt[i-1],1,ld);
}
while(bfs()) ans-=dfs(S,INF);
printf("%d",ans);
return 0;
}