拉格朗日四平方和定理c语言,Lagrange四平方和定理

该楼层疑似违规已被系统折叠 隐藏此楼查看此楼

同理, 可证m₁p=-1+x₁²+y₁²也有一样的结论. 于是两式之和得mp=x₁²+x₂²+x₃²+x²₄ , m

下面我们一直假定m取m₀为满足的最小值, 并证明m₀=1.

证明:

(i) 显然(x₁,x₂,x₃,x₄)=1, 如果m₀为偶数, 则x₁,x₂,x₃,x₄中的奇数的个数必为偶数个(包括没有奇数的情形). 所以可假定2|x₁+x₂ , 2|x₃+x₄ .

由此及式(3)(m=m₀)就推出

m₀p/2=[(x₁+x₂)/2]²+[(x₁-x₂)/2]²+[(x₃+x₄)/2]²+[(x₃-x₄)/2]².

这和m₀的最小值矛盾. 所以m₀一定为奇数.

(ii) 必有m₀=1. 若不然, 设m₀>1(m₀是奇数), 现取y_i≡x_i(mod m₀), |y_i|

我们有y₁²+y₂²+y₃²+y₄²

所以有y₁²+y₂²+y₃²+y₄²=m₁m₀ , 0≤m₁

我们来证明m₁≠0. 若m₁=0, 则y₁=y₂=y₃=y₄=0, 由式(4)得m₀|x_i, i=1,2,3,4. 即m₀|(x₁,x₂,x₃,x₄)=1, 矛盾.

式(3)和式(5)作乘得

u₁²+u₂²+u₃²+u₄²=m₁m₀²p, 1≤m₁

其中u₁=x₁y₁+x₂y₂+x₃y₃+x₄y₄ , u₂=x₁y₂-x₂y₁+x₃y₄+x₄y₃ , u₃=x₁y₃-x₃y₁+x₄y₂+x₂y₄ , u₄=x₁y₂-x₄y₁+x₂y₃-x₃y₂ ,

由式(4)及式(3)(m=m₀)得

u₁≡x₁²+x₂²+x₃²x₄²≡0(mod m₀). 由式(4)得x_i*y_j≡x_j*y_i(mod m₀), 1≤i , j≤4, 因而有u₂≡u₃≡u₄≡0(mod m₀).由以上两式及式(6)得到

(u₁/m₀)²+(u₂/m₀)²+(u₃/m₀)²+(u₄/m₀)²=m₁p, 1≤m₁

这和m₀的最小性矛盾. 所以m₀=1.证毕.

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值