洛谷P1719 最大加权矩形

题目描述

为了更好的备战NOIP2013,电脑组的几个女孩子LYQ,ZSC,ZHQ认为,我们不光需要机房,我们还需要运动,于是就决定找校长申请一块电脑组的课余运动场地,听说她们都是电脑组的高手,校长没有马上答应他们,而是先给她们出了一道数学题,并且告诉她们:你们能获得的运动场地的面积就是你们能找到的这个最大的数字。

校长先给他们一个N*N矩阵。要求矩阵中最大加权矩形,即矩阵的每一个元素都有一权值,权值定义在整数集上。从中找一矩形,矩形大小无限制,是其中包含的所有元素的和最大 。矩阵的每个元素属于[-127,127],例如

0 –2 –7 0 在左下角: 9 2

9 2 –6 2 -4 1

-4 1 –4 1 -1 8

-1 8 0 –2 和为15

几个女孩子有点犯难了,于是就找到了电脑组精打细算的HZH,TZY小朋友帮忙计算,但是遗憾的是他们的答案都不一样,涉及土地的事情我们可不能含糊,你能帮忙计算出校长所给的矩形中加权和最大的矩形吗?

输入输出格式

输入格式:
第一行:n,接下来是n行n列的矩阵。

输出格式:
最大矩形(子矩阵)的和。

输入输出样例

输入样例#1:
4
0 –2 –7 0
9 2 –6 2
-4 1 –4 1
–1 8 0 –2
输出样例#1:
15
说明

n<=120

看到这道题,我瞬间想起了NOI OpenJudge 题库上的P1768最大子矩阵问题,此两题除了名字不同,确实一模一样。

关键词:贪心、二维转一维、最大字段和

total数组用于存纵向数值之和,total[i][j]代表从第0行到第i行第j-1纵列数值之和,

要求第q行到第z行纵列数值之和,用total[z][j]-total[q-1][j]即可。(前缀和优化)——此处即开始分各种情况(q、z不同)

total1用于在求出对应纵列数值之和后(一种情况),将其转化为最大子段和问题(只要一维!),

最大子段和问题公式为total1[j]=max(total1[j-1]+total1[j],total1[j]),这一行中得到的最大值那一列及其前面的数即为第q到z行最大子段。

最终将各个情况(不同行)的最大子段数比个大小即可。

#include<cmath>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<algorithm>
#include<iostream>
#include<cstring>
using namespace std;
int a[101][101],b[101],total[101][101]={},total1[101]={};
int main()
{
  int i,j,k,n,m=-1,mx=-1000,q,z;
  cin>>n;
  for(i=0;i<n;i++)
    for(j=0;j<n;j++)
      cin>>a[i][j];
  for(i=0;i<n;i++)
    total[0][i]=a[0][i];
    for(i=1;i<n;i++)
      for(j=0;j<n;j++)
    {
      total[i][j]=total[i-1][j]+a[i][j];
    }
  for(q=1;q<n;q++)
    for(z=q;z<n;z++)
    {
      for(j=0;j<n;j++)
      {
        total1[j]=total[z][j]-total[q-1][j];
      }
      for(j=1;j<n;j++)
          total1[j]=max(total1[j-1]+total1[j],total1[j]);
          for(j=0;j<n;j++)
            if(total1[j]>m) {m=total1[j];mx=j;}
   }
  cout<<m<<endl;
  return 0;
}

转载于:https://www.cnblogs.com/yanshannan/p/7327912.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
一般图最大加权匹配算法可以使用带权二分图匹配算法来实现。具体来说,可以将一般图转化为一个带权二分图,然后将带权二分图匹配的结果转化为一般图的最大加权匹配结果。 将一般图$G=(V,E)$转化为一个带权二分图$G'=(V',E',w)$,其中$V' = V\cup V'$,$V$为原图中的节点集合,$V' = \{v'_1, v'_2, \cdots, v'_n\}$为新的节点集合,$n=|V|$。对于每个节点$v\in V$和$v'\in V'$,如果$(v,v')\in E$,则在$G'$中添加一条从$v$到$v'$的边$e=(v,v')$,边的权重为原图中节点$v$的权重。如果$(v',v)\in E$,则在$G'$中添加一条从$v'$到$v$的边$e'=(v',v)$,边的权重为$-w(v)$。这样构造的带权二分图$G'$是一个完全二分图,可以使用二分图最大权匹配算法求解。 在得到带权二分图$G'$的最大权匹配结果后,可以将匹配结果转化为一般图$G$中的最大加权匹配结果。具体来说,对于二分图$G'$的匹配结果,将每个匹配的节点$v'\in V'$对应的节点$v\in V$加入匹配结果中,匹配的权重为原图中节点$v$的权重。这样得到的匹配结果即为一般图$G$的最大加权匹配结果。 以下是使用networkx库实现一般图最大加权匹配的Python代码示例: ```python import networkx as nx def general_max_weight_matching(general_graph): """ 一般图最大加权匹配 :param general_graph: 一般图,使用networkx库的Graph对象表示,节点带有weight属性表示节点权重 :return: 匹配结果,为一个Python列表,每个元素为形如(v, u, w)的元组,表示匹配的节点对(v, u)和匹配的权重w """ # 将一般图转化为带权二分图 bipartite_graph = nx.Graph() for node in general_graph.nodes: bipartite_graph.add_node(node) bipartite_graph.add_node(node + "'") for u, v in general_graph.edges: weight = general_graph[u][v]["weight"] bipartite_graph.add_edge(u, v + "'", weight=weight) bipartite_graph.add_edge(v, u + "'", weight=-weight) # 计算带权二分图的最大权匹配 matching = nx.algorithms.bipartite.matching.max_weight_matching(bipartite_graph) # 将匹配结果转化为一般图的最大加权匹配结果 max_weight_matching = [] for u, v in matching.items(): if u.endswith("'"): continue if v.endswith("'"): v = v[:-1] else: continue if general_graph.has_edge(u, v): weight = general_graph[u][v]["weight"] max_weight_matching.append((u, v, weight)) return max_weight_matching ``` 需要注意的是,以上代码假设一般图的节点带有`weight`属性表示节点权重。在这个假设下,`general_graph[u][v]["weight"]`可以用来获取节点$u$和节点$v$之间的边的权重
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值