NOIP2018 初赛数学第二题解析

题意是a,b在0到31中取值,问ab无序对满足a*b=(a|b)*(a&b)的数量。

打表找规律后,发现a包含于b或b包含于a时,合法,来证明一下这个结论。

不失一般性,设a小于等于b。

有恒等式a|b=a+b-(a&b)

设a&b=z

a*b=(a+b-z)*z

易知z<=a

若z=a

a*b=b*a符合条件,此时a是b的子集

若z<a

有(a+b-z)>b

又因z<a

由某很显然的不等式,若两自然数和相等,那么越接近,值严格递增。

所以(a+b-z)*z<a*b

上述结论已经很显然了。

 

转载于:https://www.cnblogs.com/Yuhuger/p/9786991.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值