首先要知道不能跑最短路,因為只有整2^k才能一秒到達,和倍增有關
所以我們想知道任意兩點間能否存在一條2^k長度的路徑,數據很小,可以考慮floyd
把倍增和floyd結合起來考慮發現如果i到k,k到j各有一條2^(k-1長的路徑,那麼i,j之間存在一條2^k長度的路徑
於是在更新一下實際時間,對時間跑一遍floyd即可
#include<bits/stdc++.h> using namespace std; int n,m; long long d[55][55]; bool f[55][55][65];//i,j是否存在長2^k長度的路徑 int main() { scanf("%d%d",&n,&m); memset(d,9999,sizeof(d)); for(int i=1,x,y;i<=m;i++){ scanf("%d%d",&x,&y); d[x][y]=1;f[x][y][0]=1; } //類似floyd,i,j到t都存在長度為2^(k-1),那麼i,j之間存在2^k長度的路徑 for(int k=1;k<=64;k++) for(int t=1;t<=n;t++) for(int i=1;i<=n;i++) for(int j=1;j<=n;j++) if(f[i][t][k-1] && f[t][j][k-1]) f[i][j][k]=1,d[i][j]=1; //真floyd for(int k=1;k<=n;k++) for(int i=1;i<=n;i++) for(int j=1;j<=n;j++) d[i][j]=min(d[i][j],d[i][k]+d[k][j]); printf("%lld",d[1][n]); }