2298 石子合并 2008年省队选拔赛山东

题目描述  Description

  在一个操场上摆放着一排N堆石子。现要将石子有次序地合并成一堆。规定每次只能选相邻的2堆石子合并成新的一堆,并将新的一堆石子数记为该次合并的得分。

  试设计一个算法,计算出将N堆石子合并成一堆的最小得分。

输入描述  Input Description

  第一行是一个数N。

  以下N行每行一个数A,表示石子数目。

 

输出描述  Output Description

  共一个数,即N堆石子合并成一堆的最小得分。

样例输入  Sample Input

4

1

1

1

1

样例输出  Sample Output

8

数据范围及提示  Data Size & Hint

对于 30% 的数据,1≤N≤100

对于 60% 的数据,1≤N≤1000

对于 100% 的数据,1≤N≤40000

对于 100% 的数据,1≤A≤200

 

思路:

      1. 这类题目一开始想到是DP, 设dp[i][j]表示第i堆石子到第j堆石子合并最小得分.

         状态方程: dp[i][j] = min(dp[i][k]+dp[k+1][j]+sum[j]-sum[i-1]);

         sum[i]表示第1到第i堆石子总和. 递归记忆化搜索即可.

      2. 不过此题有些不一样, 1<=n<=50000范围特大, dp[50000][50000]开不到这么大数组.

         问题分析:

         (1). 假设我们只对3堆石子a,b,c进行比较, 先合并哪2堆, 使得得分最小.

              score1 = (a+b) + ( (a+b)+c )

              score2 = (b+c) + ( (b+c)+a )

              再次加上score1 <= score2, 化简得: a <= c, 可以得出只要a和c的关系确定,

              合并的顺序也确定.

         (2). GarsiaWachs算法, 就是基于(1)的结论实现.找出序列中满足stone[i-1] <=

              stone[i+1]最小的i, 合并temp = stone[i]+stone[i-1], 接着往前面找是否

              有满足stone[j] > temp, 把temp值插入stone[j]的后面(数组的右边). 循环

              这个过程一直到只剩下一堆石子结束.

         (3). 为什么要将temp插入stone[j]的后面, 可以理解为(1)的情况

              从stone[j+1]到stone[i-2]看成一个整体 stone[mid],现在stone[j],

              stone[mid], temp(stone[i-1]+stone[i-1]), 情况因为temp < stone[j],

              因此不管怎样都是stone[mid]和temp先合并, 所以讲temp值插入stone[j]

              的后面是不影响结果.

 

 1 #include<cstdio>
 2 #include<iostream>
 3 #define ll long long
 4 #define MAXN 50010
 5 using namespace std;
 6 int t=1,n,a[MAXN];
 7 ll ans=0;
 8 inline void read(int&x) {
 9     x=0;char c=getchar();
10     while(c>'9'||c<'0') c=getchar();
11     while(c>='0'&&c<='9') x=10*x+c-48,c=getchar();
12 }
13 inline void go(int k) {
14     int temp=a[k-1]+a[k];
15     ans+=temp;
16     for(int i=k;i<t-1;i++) a[i]=a[i+1];
17     t--;
18     int j=0;
19     for(j=k-1;j>0&&a[j-1]<temp;j--)
20       a[j]=a[j-1];
21     a[j]=temp;
22     while(j>=2&&a[j]>=a[j-2]) {
23         int p=t-j;
24         go(j-1);
25         j=t-p;
26     }
27 }
28 int main() {
29     read(n);
30     for(int i=0;i<n;i++) read(a[i]);
31     for(int i=1;i<n;i++) {
32         a[t++]=a[i];
33         while(t>=3&&a[t-3]<=a[t-1]) go(t-2);
34     }
35     while(t>1) go(t-1);
36     printf("%lld\n",ans);
37     return 0;
38 } 
View Code

 

转载于:https://www.cnblogs.com/whistle13326/p/6359076.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值