题目一:
反转从位置 m 到 n 的链表。请使用一趟扫描完成反转。
说明:
1 ≤ m ≤ n ≤ 链表长度。
示例:
输入: 1->2->3->4->5->NULL, m = 2, n = 4
输出: 1->4->3->2->5->NULL
方法一:
1、和链表反转很相似,增加了难度,需要选择一定的区间;
2、找到区间进行反转,最后再将链表和之前的进行连接;
3、首先找到反转链表的前一位,for(int i=0;i<m-1;i++) pre=pre.next;
4、然后开始反转链表,定义两个结点,ListNode node=null,ListNode curr=pre.next;然后进行循环链表反转,循环条件直到i<n-m+1;
5、最后将链表进行连接,pre.next.next=curr,pre.next=node;
6、返回哑结点dummy.next;
具体代码:
class Solution { public ListNode reverseBetween(ListNode head, int m, int n) { ListNode dummy=new ListNode(0); dummy.next=head; ListNode pre=dummy; for(int i=0;i<m-1;i++) pre=pre.next; ListNode node=null; ListNode curr=pre.next; for(int i=0;i<n-m+1;i++) { ListNode temp=curr.next; curr.next=node; node=curr; curr=temp; } pre.next.next=curr; pre.next=node; return dummy.next; } }
题目二:
给定一个包括 n 个整数的数组 nums 和 一个目标值 target。找出 nums 中的三个整数,使得它们的和与 target 最接近。返回这三个数的和。假定每组输入只存在唯一答案。
例如,给定数组 nums = [-1,2,1,-4], 和 target = 1.
与 target 最接近的三个数的和为 2. (-1 + 2 + 1 = 2).
方法:
1、要求三个数和目标值进行比较,采用三次循环的时间复杂度相对较高,设置双指针和一个循环进行比较;
2、双指针设置在第一层循环里,当然需要先对数组进行排序,Arrays.sort(nums);
3、ans=nums[0]+nums[1]+nums[2],设置返回的初始值;
4、for(int i=0;i<nums.length;i++) int start=i+1,end=nums.lenght-1,int sum=nums[i]+nums[start]+nums[end];
5、while(start<end) ,这一点较为关键比较目标值和sum之间的距离,取最小值;
6、if(Math.abs(target-sum)<Math.abs(target-ans)) ans=sum;
7、移动双指针,直到遍历完所有的情况,if(target<sum) start++;if(target>sum) end--;
8、返回ans;
具体代码:
class Solution { public int threeSumClosest(int[] nums, int target) { Arrays.sort(nums); int ans=nums[0]+nums[1]+nums[2]; for(int i=0;i<nums.length;i++) { int start=i+1,end=nums.length-1; while(start<end) { int sum=nums[i]+nums[start]+nums[end]; if(Math.abs(target-sum)<Math.abs(target-ans)) { ans=sum; } if(sum>target) end--; else if (sum<target) { start++; } else { return ans; } } } return ans; } }
题目三:
给定一个包含红色、白色和蓝色,一共 n 个元素的数组,原地对它们进行排序,使得相同颜色的元素相邻,并按照红色、白色、蓝色顺序排列。
此题中,我们使用整数 0、 1 和 2 分别表示红色、白色和蓝色。
注意:
不能使用代码库中的排序函数来解决这道题。
示例:
输入: [2,0,2,1,1,0]
输出: [0,0,1,1,2,2]
方法:
1、这其实是一个排序问题,思路也不是很容易想到;
2、这里面可以用三指针实现,一个指向数组最开始,一个指向数组最末尾,另一进行逐个遍历数组;
3、思想较为巧妙,p0指向0的最右端,p2指向2的最左端,curr进行遍历数组;
4、通过交换元素和指针移动进行;
具体代码:
class Solution { public void sortColors(int[] nums) { int p0=0,p2=nums.length-1; int curr=0; for(int i=0;i<nums.length;i++) { if(nums[curr]==0) { int temp=nums[curr]; nums[curr++]=nums[p0]; nums[p0++]=temp; } else if (nums[curr]==2) { int tem=nums[curr]; nums[curr]=nums[p2]; nums[p2--]=tem; } else { curr++; } } } }
题目四:
给定一组不含重复元素的整数数组 nums,返回该数组所有可能的子集(幂集)。
说明:解集不能包含重复的子集。
示例:
输入: nums = [1,2,3]
输出:
[
[3],
[1],
[2],
[1,2,3],
[1,3],
[2,3],
[1,2],
[]
]
方法一:
1、递归+回溯实现,这个方法代码很简洁,但却很不好理解;
2、递归是在一个循环中进行,也就是在循环中进行循环;
3、进行深度优先遍历将所有在一个值的情况,然后再进行回溯;
4、回溯的时候一定要去除数组的最上面的元素;
具体代码:
class Solution { public List<List<Integer>> subsets(int[] nums) { List<List<Integer>> res=new ArrayList<>(); backTrace(0,nums,res,new ArrayList<Integer>()); return res; } public void backTrace(int i,int[] nums,List<List<Integer>> res,ArrayList<Integer> tem) { res.add(new ArrayList<>(tem)); for(int j=i;j<nums.length;j++) { tem.add(nums[j]); backTrace(j+1, nums, res, tem); tem.remove(tem.size()-1); } } }
题目五:
给定一个无重复元素的数组 candidates 和一个目标数 target ,找出 candidates 中所有可以使数字和为 target 的组合。
candidates 中的数字可以无限制重复被选取。
说明:
所有数字(包括 target)都是正整数。
解集不能包含重复的组合。
示例 1:
输入: candidates = [2,3,6,7], target = 7,
所求解集为:
[
[7],
[2,2,3]
]
方法:
1、回溯+递归,仍然采用上式的方式;
2、不同点在于要求得的列表是不同的,之前是求子集,而现在求满足符合目标元素的值;
3、只要满足目标值,就将此数组加入到res中;
4、算法的回溯是根据目标值,而不是下一个元素,因为元素可以重复使用;
具体代码:
class Solution { public List<List<Integer>> combinationSum(int[] candidates, int target) { List<List<Integer>> res=new ArrayList<>(); Arrays.sort(candidates); backdown(candidates,target,0,res,new ArrayList<>()); return res; } public void backdown(int[] candidates,int target,int i,List<List<Integer>> res,ArrayList<Integer> temp) { if(target<0) return; if(target==0) { res.add(new ArrayList<>(temp)); return; } for(int j=i;j<candidates.length;j++) { if(target<candidates[j]) break; temp.add(candidates[j]); backdown(candidates,target-candidates[j],j,res,temp); temp.remove(temp.size()-1); } } }
题目六:
给定一组不含重复元素的整数数组 nums,返回该数组所有可能的子集(幂集)。
说明:解集不能包含重复的子集。
示例:
输入: nums = [1,2,3]
输出:
[
[3],
[1],
[2],
[1,2,3],
[1,3],
[2,3],
[1,2],
[]
]
方法:
1、这是一种很巧妙的方法,采用位运算求子集;
2、因为一个数组的子集刚好是2的n次方,比如数组元素为[1,2,3],它的子集刚好是8个,用二进制表示其大小n=1<<3;
3、然后将这8个子集分别放入列表中,接下来是如何放入列表的问题;
4、对这8个数进行循环,for(int i=0;i<8;i++) for(int j=0;j<3;j++) 将i进行位运算,找到所有为1的数值,将其加入到temp中;
5、if(i>>j&1==1) list.add(nums[j]);
具体代码:
class Solution { public List<List<Integer>> subsets(int[] nums) { List<List<Integer>> res=new ArrayList<>(); int n=1<<nums.length; for(int i=0;i<n;i++) { List<Integer> list=new ArrayList<>(); for(int j=0;j<nums.length;j++) { if(((i>>j)&1)==1) list.add(nums[j]); } res.add(list); } return res; } }
题目七:
给定一个非空整数数组,除了某个元素只出现一次以外,其余每个元素均出现两次。找出那个只出现了一次的元素。
说明:
你的算法应该具有线性时间复杂度。 你可以不使用额外空间来实现吗?
示例 1:
输入: [2,2,1]
输出: 1
方法:
1、异或运算,同假异真;
2、异或的性质,0^一个数=这个数,数一^数一=0,并且满足交换律和结合律;
具体代码:
class Solution { public int singleNumber(int[] nums) { int result=0; for(int i=0;i<nums.length;i++) { result=result^nums[i]; } return result; } }
题目八:
给定一个整数,编写一个函数来判断它是否是 2 的幂次方。
示例 1:
输入: 1
输出: true
解释: 20 = 1
方法:
1、采用位运算,对整数n进行与运算,如果n是2的幂次方,那么n&n-1=0
具体代码:
class Solution { public boolean isPowerOfTwo(int n) { if((n>0)&&(n&(n-1))==0) return true; else { return false; } } }