题目描述
有下面这样的一个网格棋盘,a,b,c,d表示了对应边长度,也就是对应格子数。
当a=b=c=d=2时,对应下面这样一个棋盘
要在这个棋盘上放K个相互不攻击的车,也就是这K个车没有两个车在同一行,也没有两个车在同一列,问有多少种方案。同样只需要输出答案mod 100003后的结果。
输入输出格式
输入格式:
输入文件place.in的第1行为有5个非负整数a, b, c, d和k。
输出格式:
输出文件place.out包括1个正整数,为答案mod 100003后的结果。
输入输出样例
输入样例#1: 复制
2 2 2 2 2
输出样例#1: 复制
38
说明
【数据规模与约定】
对于部分数据,有b = 0;
对于部分数据,有a,b,c,d≤4。
对于100%的数据,a,b,c,d,k≤1000,且保证了至少有一种可行方案。
把棋盘拆成两半
我们在上面\(a\times b\)的矩阵放了\(m\)个车,那么就要在下面\((a+c-m)\times d\)的矩阵放\(k-m\)个车
分别用排列组合解决就是\[\sum _{m=0}^kC_a^m\times C_b^m\times A_m^m\times C_{a+c-m}^{k-m}\times C_d^{k-m}\times A_{k-m}^{k-m}\]
#include<iostream>
#include<cstdio>
#define M 100003
#define LL long long
using namespace std;
LL n,a,b,c,d,k,f[10001],s[10001],ans;
LL A[10001],B[10001],inv[100001];
int main()
{
scanf("%lld%lld%lld%lld%lld",&a,&b,&c,&d,&k);
inv[1]=A[0]=A[1]=B[1]=B[0]=1;
for(int i=2;i<=k+a+b+c+d;i++)
{
inv[i]=(M-M/i)*inv[M%i]%M;
B[i]=inv[i]*B[i-1]%M;
A[i]=A[i-1]*i%M;
}
for(int i=0;i<=min(a,min(b,k));i++) f[i]=A[a]*B[i]%M*B[a-i]%M*A[b]%M*B[i]%M*B[b-i]%M*A[i]%M;
for(int i=0;i<=min(a+c,min(d,k));i++) s[i]=A[a+c-k+i]*B[i]%M*B[a+c-k]%M*A[d]%M*B[i]%M*B[d-i]%M*A[i]%M;
for(int i=0;i<=k;i++) ans=(ans+f[i]*s[k-i]%M)%M;
printf("%lld",ans);
}