RDD可以很好地适用于支持数据并行的批量分析应用,包括数据挖掘,机器学习,图算法等,因为这些程序通常都会在很多记录上执行相同的操作。RDD不太适合那些异步更新共享状态的应用,例如并行web爬行器。因此,我们的目标是为大多数分析型应用提供有效的编程模型,而其他类型的应用交给专门的系统。
关于RDD详见:
弹性分布式数据集:一种基于内存的集群计算的容(二):弹性分布式数据集(RDD)
硬件环境:
开发机器是 3台 Intel(R) Xeon(R) CPU E5440 @ 2.83GHz双核 2.8G 4G内存
操作系统:
Red Hat Enterprise Linux Server release 5.7 (Tikanga)
Spark配置:
三节点,每个节点2G内存,14 个维度,100个类别,10次迭代,使用不同大小样例文件分析。
结论1:定义0.8(数据量/2048/3)作为三节点的阈值,当运行数据在阈值内时性能成单调递增,当超过该阈值时,性能急剧下降,当超过阈值2%时性能下降53.11937%,当超过34.01326%,性能下降70.80896%
以下是测试数据:
序号 | 数据文件大小(M) | 记录条数 | 耗时 | 数据文件/耗时 | 数据/内存 | 数据/内存/节点数 |
0 | 33.33 | 147,106 | 10 | 3.333344 | 0.016274 | 0.005425 |
1 | 100 | 441,319 | 13 | 7.692317 | 0.048828 | 0.016276 |
2 | 166.67 | 735,533 | 15 | 11.11118 | 0.081382 | 0.027127 |
3 | 233.33 | 1,029,746 | 20 | 11.66652 | 0.113931 | 0.037977 |
4 | 341.33 | 1,506,371 | 23 | 14.8406 | 0.166665 | 0.055555 |
5 | 512 | 2,259,557 | 30 | 17.06666 | 0.25 | 0.083333 |
6 | 682.67 | 3,012,743 | 42 | 16.25402 | 0.333335 | 0.111112 |
7 | 853.33 | 3,765,929 | 45 | 18.96291 | 0.416665 | 0.138888 |
8 | 1,024.00 | 4,519,115 | 57 | 17.96494 | 0.5 | 0.166667 |
9 | 1,194.67 | 5,272,301 | 65 | 18.37953 | 0.583335 | 0.194445 |
10 | 1,365.33 | 6,025,487 | 73 | 18.70316 | 0.666665 | 0.222222 |
11 | 1,536.00 | 6,778,673 | 80 | 19.20001 | 0.75 | 0.25 |
12 | 1,706.67 | 7,531,859 | 95 | 17.96491 | 0.833335 | 0.277778 |
13 | 1,877.33 | 8,285,044 | 147 | 12.77097 | 0.916665 | 0.305555 |
14 | 2,048.00 | 9,038,230 | 104 | 19.6923 | 1 | 0.333333 |
15 | 2,218.66 | 9,791,416 | 113 | 19.63417 | 1.08333 | 0.36111 |
16 | 2,389.33 | 10,544,602 | 124 | 19.26881 | 1.166665 | 0.388888 |
17 | 2,560.01 | 11,297,788 | 175 | 14.62861 | 1.250005 | 0.416668 |
18 | 2,730.66 | 12,050,974 | 184 | 14.84056 | 1.33333 | 0.444443 |
19 | 2,901.34 | 12,804,160 | 164 | 17.69109 | 1.41667 | 0.472223 |
20 | 3,072.00 | 13,557,346 | 155 | 19.81934 | 1.5 | 0.5 |
21 | 3,242.67 | 14,310,532 | 162 | 20.01647 | 1.583335 | 0.527778 |
22 | 3,413.34 | 15,063,718 | 166 | 20.56231 | 1.66667 | 0.555557 |
23 | 3,754.68 | 16,570,089 | 179 | 20.97585 | 1.83334 | 0.611113 |
24 | 4,266.68 | 18,829,646 | 189 | 22.57501 | 2.08334 | 0.694447 |
25 | 4,500.01 | 19,859,392 | 209 | 21.53114 | 2.197271 | 0.732424 |
26 | 4,666.68 | 20,594,925 | 202 | 23.10235 | 2.278652 | 0.759551 |
27 | 4,766.68 | 21,036,244 | 202 | 23.5974 | 2.32748 | 0.775827 |
28 | 4,866.68 | 21,477,563 | 226 | 21.53396 | 2.376309 | 0.792103 |
29 | 4,966.68 | 21,918,882 | 220 | 22.5758 | 2.425137 | 0.808379 |
30 | 5,066.68 | 22,360,201 | 458 | 11.06261 | 2.473965 | 0.824655 |
31 | 5,120.01 | 22,595,577 | 463 | 11.05834 | 2.500005 | 0.833335 |
32 | 6,656.01 | 29,374,250 | 1010 | 6.59011 | 3.250005 | 1.083335 |
性能趋势图:
Spark配置:
一节点, 2G内存,14 个维度,100个类别,10次迭代。
结论2:定义0.9(数据量/2048)作为三节点的阈值,当运行数据在阈值内时性能成单调递增,当超过该阈值时,性能急剧下降,当超过阈值8.3334961%时性能下降57.61797318%,当超过18.18167291%,性能下降66.4701143%
当超过36.36441116%,性能下降94.14757913%
序号 | 数据文件大小(M) | 记录条数 | 耗时 | 数据文件/耗时 | 数据/内存 |
0 | 33.33 | 147,106 | 10 | 3.333344 | 0.016274 |
1 | 100.00 | 441,319 | 20 | 5.000006 | 0.048828 |
2 | 166.67 | 735,533 | 27 | 6.17288 | 0.081382 |
3 | 233.33 | 1,029,746 | 34 | 6.862657 | 0.113931 |
4 | 341.33 | 1,506,371 | 45 | 7.585197 | 0.166665 |
5 | 512.00 | 2,259,557 | 64 | 7.999997 | 0.25 |
6 | 682.67 | 3,012,743 | 85 | 8.031401 | 0.333335 |
7 | 853.33 | 3,765,929 | 102 | 8.365989 | 0.416665 |
8 | 1,024.00 | 4,519,115 | 118 | 8.67798 | 0.5 |
9 | 1,194.67 | 5,272,301 | 137 | 8.720216 | 0.583335 |
10 | 1,365.33 | 6,025,487 | 153 | 8.923729 | 0.666665 |
11 | 1,536.00 | 6,778,673 | 176 | 8.727279 | 0.75 |
12 | 1,706.67 | 7,531,859 | 193 | 8.84283 | 0.833335 |
13 | 1,877.33 | 8,285,044 | 223 | 8.41853 | 0.916665 |
14 | 2,048.00 | 9,038,230 | 574 | 3.567944 | 1 |
15 | 2,218.66 | 9,791,416 | 786 | 2.822724 | 1.08333 |
16 | 2,389.33 | 10,544,602 | 1134 | 2.106995 | 1.166665 |
17 | 2,560.01 | 11,297,788 | 5196 | 0.492688 | 1.250005 |
性能趋势图:
总论:在执行Spark程序的时候需预估所需的内存,当超过一定阈值后,性能将急剧下降。如有不对或不足的地方请指正。
版权声明:原创作品,转载请保持文章完整性,转载时请务必以超链接形式标明文章原始出版、作者信息和本声明。否则将追究法律责任。