spoj 839 OPTM - Optimal Marks&&bzoj 2400【最小割】

因为是异或运算,所以考虑对每一位操作。对于所有已知mark的点,mark的当前位为1则连接(s,i,inf),否则连(i,t,inf),然后其他的边按照原图连(u,v,1),(v,u,1),跑最大流求最小割。然后从s沿着有剩余流量的边dfs,把dfs到的点都与(|)上1,因为是与,所以即使操作到了已知mark的点也没关系。
考虑这样做的意义。最小割就是把总点集分割为两个点集S,T,使得所有\(u\in S,v\in T,val(u,v) \)的值最小。也就是说,在这道题中的意义就是在当前位使最少的边两端相异(这样会使这条边边权的当前位为0)。

//spoj 839
#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
using namespace std;
const int N=505,M=200005,inf=1e9;
int T,n,m,k,s,t,a[M][2],b[N],mk[N],le[N],ans,h[N],cnt;
bool vis[N];
struct qwe
{
    int ne,to,v;
}e[M];
int read()
{
    int r=0,f=1;
    char p=getchar();
    while(p>'9'||p<'0')
    {
        if(p=='-')
            f=-1;
        p=getchar();
    }
    while(p>='0'&&p<='9')
    {
        r=r*10+p-48;
        p=getchar();
    }
    return r*f;
}
void add(int u,int v,int w)
{
    cnt++;
    e[cnt].ne=h[u];
    e[cnt].to=v;
    e[cnt].v=w;
    h[u]=cnt;
}
void ins(int u,int v,int w)
{//cout<<u<<" "<<v<<endl;
    add(u,v,w);
    add(v,u,0);
}
bool bfs()
{
    memset(le,0,sizeof(le));
    queue<int>q;
    le[s]=1;
    q.push(s);
    while(!q.empty())
    {
        int u=q.front();
        q.pop();
        for(int i=h[u];i;i=e[i].ne)
            if(!le[e[i].to]&&e[i].v>0)
            {
                le[e[i].to]=le[u]+1;
                q.push(e[i].to);
            }
    }
    return le[t];
}
int dfs(int u,int f)
{
    if(u==t||!f)
        return f;
    int us=0;
    for(int i=h[u];i&&us<f;i=e[i].ne)
        if(le[e[i].to]==le[u]+1&&e[i].v>0)
        {
            int t=dfs(e[i].to,min(e[i].v,f-us));
            e[i].v-=t;
            e[i^1].v+=t;
            us+=t;
        }
    return us;
}
int dinic()
{
    int re=0;
    while(bfs())
        re+=dfs(s,inf);
    return re;
}
void dfs1(int u,int w)
{//cout<<u<<endl;
    mk[u]|=(1<<w);
    vis[u]=1;
    for(int i=h[u];i;i=e[i].ne)
        if(!vis[e[i].to]&&e[i].v)
            dfs1(e[i].to,w);
}
int main()
{
    T=read();
    while(T--)
    {
        memset(mk,0,sizeof(mk));
        n=read(),m=read();
        s=0,t=n+1;
        for(int i=1;i<=m;i++)
            a[i][0]=read(),a[i][1]=read();
        k=read();
        for(int i=1;i<=k;i++)
        {
            b[i]=read();
            mk[b[i]]=read();
        }
        for(int i=0;i<=30;i++)
        {
            memset(h,0,sizeof(h));
            cnt=1;
            for(int j=1;j<=k;j++)
            {
                if(mk[b[j]]&(1<<i))
                    ins(s,b[j],inf);
                else
                    ins(b[j],t,inf);
            }
            for(int j=1;j<=m;j++)
            {
                add(a[j][0],a[j][1],1);
                add(a[j][1],a[j][0],1);
            }
            dinic();
            memset(vis,0,sizeof(vis));
            dfs1(s,i);
        }
        for(int i=1;i<=n;i++)
            printf("%d\n",mk[i]);
    }
    return 0;
}
//bzoj 2400
#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
using namespace std;
const int N=500005,M=500005,inf=1e9;
int T,n,m,k,s,t,a[M][2],b[N],mk[N],le[N],ans,h[N],cnt;
long long ans1,ans2;
bool vis[N];
struct qwe
{
    int ne,to,v;
}e[M];
int read()
{
    int r=0,f=1;
    char p=getchar();
    while(p>'9'||p<'0')
    {
        if(p=='-')
            f=-1;
        p=getchar();
    }
    while(p>='0'&&p<='9')
    {
        r=r*10+p-48;
        p=getchar();
    }
    return r*f;
}
void add(int u,int v,int w)
{
    cnt++;
    e[cnt].ne=h[u];
    e[cnt].to=v;
    e[cnt].v=w;
    h[u]=cnt;
}
void ins(int u,int v,int w)
{//cout<<u<<" "<<v<<endl;
    add(u,v,w);
    add(v,u,0);
}
bool bfs()
{
    memset(le,0,sizeof(le));
    queue<int>q;
    le[s]=1;
    q.push(s);
    while(!q.empty())
    {
        int u=q.front();
        q.pop();
        for(int i=h[u];i;i=e[i].ne)
            if(!le[e[i].to]&&e[i].v>0)
            {
                le[e[i].to]=le[u]+1;
                q.push(e[i].to);
            }
    }
    return le[t];
}
int dfs(int u,int f)
{
    if(u==t||!f)
        return f;
    int us=0;
    for(int i=h[u];i&&us<f;i=e[i].ne)
        if(le[e[i].to]==le[u]+1&&e[i].v>0)
        {
            int t=dfs(e[i].to,min(e[i].v,f-us));
            e[i].v-=t;
            e[i^1].v+=t;
            us+=t;
        }
    return us;
}
int dinic()
{
    int re=0;
    while(bfs())
        re+=dfs(s,inf);
    return re;
}
void dfs1(int u,int w)
{//cout<<u<<endl;
    mk[u]|=(1<<w);
    vis[u]=1;
    for(int i=h[u];i;i=e[i].ne)
        if(!vis[e[i].to]&&e[i].v)
            dfs1(e[i].to,w);
}
int main()
{
    n=read(),m=read();
    s=0,t=n+1;
    for(int i=1;i<=n;i++)
    {
        int x=read();//cout<<x<<endl;
        if(x>=0)
        {
            b[++k]=i;
            mk[b[k]]=x;
        }
    }
    for(int i=1;i<=m;i++)
        a[i][0]=read(),a[i][1]=read();
    for(int i=0;i<=30;i++)
    {
        memset(h,0,sizeof(h));
        cnt=1;
        for(int j=1;j<=k;j++)
        {
            if(mk[b[j]]&(1<<i))
                ins(s,b[j],inf);
            else
                ins(b[j],t,inf);
        }
        for(int j=1;j<=m;j++)
        {
            add(a[j][0],a[j][1],1);
            add(a[j][1],a[j][0],1);
        }
        dinic();
        memset(vis,0,sizeof(vis));
        dfs1(s,i);
    }
    for(int i=1;i<=m;i++)
        ans1+=mk[a[i][0]]^mk[a[i][1]];
    for(int i=1;i<=n;i++)
        ans2+=mk[i];
    printf("%lld\n%lld\n",ans1,ans2);
    return 0;
}
/*
3 2
2
-1
0
1 2
2 3
*/

转载于:https://www.cnblogs.com/lokiii/p/8401442.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值