BZOJ1577: [Usaco2009 Feb]庙会捷运Fair Shuttle

n<=20000个车站,车能同时载C<=100个人,求能满足K<=50000群人的多少个。每群人给起点终点和人数,一群人不一定要都满足。

一开始想DP,想不出,很菜。

贪心即可。如果有右端点相同的几群人,那肯定优先满足左端点大的;如果有两群人发生冲突,而我们从左到右考虑区间的话,那肯定让左边的人先满足,因为他对后面的人影响小。所以先排个序然后模拟即可。模拟用线段树。

  1 #include<stdio.h>
  2 #include<string.h>
  3 #include<algorithm>
  4 #include<math.h>
  5 //#include<iostream>
  6 using namespace std;
  7 
  8 int n,K,C;
  9 #define maxn 50011
 10 struct SMT
 11 {
 12     struct Node
 13     {
 14         int Min;
 15         int add;
 16         int l,r;
 17         int ls,rs;
 18     }a[maxn];
 19     int size;
 20     SMT() {size=0;}
 21     void build(int &x,int L,int R)
 22     {
 23         x=++size;
 24         a[x].Min=C;
 25         a[x].add=0;
 26         a[x].l=L;a[x].r=R;
 27         if (L==R) {a[x].ls=a[x].rs=0;return;}
 28         const int mid=(L+R)>>1;
 29         build(a[x].ls,L,mid);
 30         build(a[x].rs,mid+1,R);
 31     }
 32     void build() {int x;build(x,1,n);}
 33     void up(int x)
 34     {
 35         const int &p=a[x].ls,&q=a[x].rs;
 36         a[x].Min=min(a[p].Min,a[q].Min);
 37     }
 38     void add_single(int x,int v)
 39     {
 40         a[x].Min+=v;
 41         a[x].add+=v;
 42     }
 43     void down(int x)
 44     {
 45         const int &p=a[x].ls,&q=a[x].rs;
 46         if (a[x].add)
 47         {
 48             add_single(p,a[x].add);
 49             add_single(q,a[x].add);
 50             a[x].add=0;
 51         }
 52     }
 53     int ql,qr,v;
 54     void Add(int x)
 55     {
 56         if (ql<=a[x].l && a[x].r<=qr) add_single(x,v);
 57         else
 58         {
 59             down(x);
 60             const int mid=(a[x].l+a[x].r)>>1;
 61             if (ql<=mid) Add(a[x].ls);
 62             if (qr>mid) Add(a[x].rs);
 63             up(x);
 64         }
 65     }
 66     void Add(int l,int r,int v)
 67     {
 68         this->ql=l,this->qr=r,this->v=v;
 69         Add(1);
 70     }
 71     int qmin(int x)
 72     {
 73         if (ql<=a[x].l && a[x].r<=qr) return a[x].Min;
 74         else
 75         {
 76             down(x);
 77             const int mid=(a[x].l+a[x].r)>>1;
 78             int ans=C;
 79             if (ql<=mid) ans=min(ans,qmin(a[x].ls));
 80             if (qr>mid) ans=min(ans,qmin(a[x].rs));
 81             return ans;
 82         }
 83     }
 84     int qmin(int l,int r)
 85     {
 86         this->ql=l,this->qr=r;
 87         return qmin(1);
 88     }
 89 }t;
 90 struct segment
 91 {
 92     int l,r,v;
 93     bool operator < (const segment &b) const
 94     {return r<b.r || (r==b.r && l>b.l);}
 95 }s[maxn];
 96 int main()
 97 {
 98     scanf("%d%d%d",&K,&n,&C);
 99     t.build();
100     for (int i=1;i<=K;i++) scanf("%d%d%d",&s[i].l,&s[i].r,&s[i].v);
101     sort(s+1,s+1+K);
102     int ans=0;
103     for (int i=1;i<=K;i++)
104     {
105         int tmp=min(t.qmin(s[i].l,s[i].r-1),s[i].v);
106         ans+=tmp; if (tmp) t.Add(s[i].l,s[i].r-1,-tmp);
107     }
108     printf("%d\n",ans);
109     return 0;
110 }
View Code

 

转载于:https://www.cnblogs.com/Blue233333/p/7456854.html

【无线传感器】使用 MATLAB和 XBee连续监控温度传感器无线网络研究(Matlab代码实现)内容概要:本文围绕使用MATLAB和XBee技术实现温度传感器无线网络的连续监控展开研究,介绍了如何构建无线传感网络系统,并利用MATLAB进行数据采集、处理与可视化分析。系统通过XBee模块实现传感器节点间的无线通信,实时传输温度数据至主机,MATLAB负责接收并处理数据,实现对环境温度的动态监测。文中详细阐述了硬件连接、通信协议配置、数据解析及软件编程实现过程,并提供了完整的MATLAB代码示例,便于读者复现和应用。该方案具有良好的扩展性和实用性,适用于远程环境监测场景。; 适合人群:具备一定MATLAB编程基础和无线通信基础知识的高校学生、科研人员及工程技术人员,尤其适合从事物联网、传感器网络相关项目开发的初学者与中级开发者。; 使用场景及目标:①实现基于XBee的无线温度传感网络搭建;②掌握MATLAB与无线模块的数据通信方法;③完成实时数据采集、处理与可视化;④为环境监测、工业测控等实际应用场景提供技术参考。; 阅读建议:建议读者结合文中提供的MATLAB代码与硬件连接图进行实践操作,先从简单的点对点通信入手,逐步扩展到多节点网络,同时可进一步探索数据滤波、异常检测、远程报警等功能的集成。
内容概要:本文系统讲解了边缘AI模型部署与优化的完整流程,涵盖核心挑战(算力、功耗、实时性、资源限制)与设计原则,详细对比主流边缘AI芯片平台(如ESP32-S3、RK3588、Jetson系列、Coral等)的性能参数与适用场景,并以RK3588部署YOLOv8为例,演示从PyTorch模型导出、ONNX转换、RKNN量化到Tengine推理的全流程。文章重点介绍多维度优化策略,包括模型轻量化(结构选择、输入尺寸调整)、量化(INT8/FP16)、剪枝与蒸馏、算子融合、批处理、硬件加速预处理及DVFS动态调频等,显著提升帧率并降低功耗。通过三个实战案例验证优化效果,最后提供常见问题解决方案与未来技术趋势。; 适合人群:具备一定AI模型开发经验的工程师,尤其是从事边缘计算、嵌入式AI、计算机视觉应用研发的技术人员,工作年限建议1-5年;熟悉Python、C++及深度学习框架(如PyTorch、TensorFlow)者更佳。; 使用场景及目标:①在资源受限的边缘设备上高效部署AI模型;②实现高帧率与低功耗的双重优化目标;③掌握从芯片选型、模型转换到系统级调优的全链路能力;④解决实际部署中的精度损失、内存溢出、NPU利用率低等问题。; 阅读建议:建议结合文中提供的代码实例与工具链(如RKNN Toolkit、Tengine、TensorRT)动手实践,重点关注量化校准、模型压缩与硬件协同优化环节,同时参考选型表格匹配具体应用场景,并利用功耗监测工具进行闭环调优。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值