Keen On Everything But Triangle
解题思路
利用主席树求区间第k小,先求区间内最大的值,再求第二大,第三大……直到找到连续的三个数可以构成一个三角形。因为对于一组数,如果不能构成三角形,就小的就是斐波那契数列,因为数的范围在10^9内,所以不会超过50个数,也就是说,我们之间这样暴力地查询,查询次数不会超过50,肯定能找到结果。
代码如下
#include <bits/stdc++.h>
#define INF 0x3f3f3f3f
using namespace std;
typedef long long ll;
inline int read(){
int res = 0, w = 0; char ch = 0;
while(!isdigit(ch)){
w |= ch == '-', ch = getchar();
}
while(isdigit(ch)){
res = (res << 3) + (res << 1) + (ch ^ 48);
ch = getchar();
}
return w ? -res : res;
}
const int N = 100005;
int rt[N], cnt;
struct T{
int l, r;
int lch, rch;
int sum;
}tree[N << 5];
ll a[N], b[N];
int build(int l, int r)
{
int p = ++cnt;
tree[p].l = l;
tree[p].r = r;
tree[p].lch = tree[p].rch = tree[p].sum = 0;
if(l == r)
return p;
int mid = (l + r) / 2;
tree[p].lch = build(l, mid);
tree[p].rch = build(mid + 1, r);
return p;
}
int insert(int k, int x)
{
int p = ++cnt;
tree[p].l = tree[k].l;
tree[p].r = tree[k].r;
tree[p].lch = tree[k].lch;
tree[p].rch = tree[k].rch;
tree[p].sum = tree[k].sum + 1;
if(tree[k].l == tree[k].r)
return p;
int mid = (tree[k].l + tree[k].r) / 2;
if(x <= mid)
tree[p].lch = insert(tree[k].lch, x);
else
tree[p].rch = insert(tree[k].rch, x);
return p;
}
int query(int k1, int k2, int x)
{
if(tree[k1].l == tree[k1].r)
return tree[k1].l;
int l1 = tree[k1].lch;
int l2 = tree[k2].lch;
if(tree[l2].sum - tree[l1].sum >= x)
return query(l1, l2, x);
else {
x -= tree[l2].sum - tree[l1].sum;
return query(tree[k1].rch, tree[k2].rch, x);
}
}
int main()
{
int n, q;
while(scanf("%d%d", &n, &q) != EOF){
for(int i = 1; i <= n; i ++){
scanf("%lld", &a[i]);
b[i] = a[i];
}
sort(b + 1, b + n + 1);
int k = unique(b + 1, b + n + 1) - b - 1;
cnt = -1;
rt[0] = build(1, k);
for(int i = 1; i <= n; i ++){
int x = lower_bound(b + 1, b + k + 1, a[i]) - b;
rt[i] = insert(rt[i - 1], x);
}
for(int i = 1; i <= q; i ++){
int l, r;
l = read(), r = read();
if(r - l + 1 < 3){
printf("-1\n");
continue;
}
int x = query(rt[l - 1], rt[r], r - l + 1);
int y = query(rt[l - 1], rt[r], r - l);
ll ans = -1;
for(int i = r - l - 1; i >= 1; i --){
int z = query(rt[l - 1], rt[r], i);
if(b[y] + b[z] > b[x]){
ans = b[x] + b[y] + b[z];
break;
}
x = y;
y = z;
}
printf("%lld\n", ans);
}
}
return 0;
}