数据挖掘领域中的分类和回归区别

数据挖掘领域中的分类和回归区别

分类和回归的区别在于输出变量的类型。
      1)定量输出称为回归,或者说是连续变量预测;
      2)定性输出称为分类,或者说是离散变量预测。

拿支持向量机举个例子:

       分类问题和回归问题都要根据训练样本找到一个实值函数g(x).

       回归问题是:给定一个新的模式,根据训练集推断它所对应的输出y(实数)是多少。也就是使用y=g(x)来推断任一输入x所对应的输出值。

       分类问题是:给定一个新的模式,根据训练集推断它所对应的类别(如:+1,-1)。也就是使用y=sign(g(x))来推断任一输入x所对应的类别。

       综上,回归问题和分类问题的本质一样,不同仅在于他们的输出的取值范围不同。分类问题中,输出只允许取两个值;而在回归问题中,输出可取任意实数。

转载于:https://www.cnblogs.com/captain_ccc/articles/4088770.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值