2005: [Noi2010]能量采集 - BZOJ

Description

栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量。在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起。 栋栋的植物种得非常整齐,一共有n列,每列有m棵,植物的横竖间距都一样,因此对于每一棵植物,栋栋可以用一个坐标(x, y)来表示,其中x的范围是1至n,表示是在第x列,y的范围是1至m,表示是在第x列的第y棵。 由于能量汇集机器较大,不便移动,栋栋将它放在了一个角上,坐标正好是(0, 0)。 能量汇集机器在汇集的过程中有一定的能量损失。如果一棵植物与能量汇集机器连接而成的线段上有k棵植物,则能量的损失为2k + 1。例如,当能量汇集机器收集坐标为(2, 4)的植物时,由于连接线段上存在一棵植物(1, 2),会产生3的能量损失。注意,如果一棵植物与能量汇集机器连接的线段上没有植物,则能量损失为1。现在要计算总的能量损失。 下面给出了一个能量采集的例子,其中n = 5,m = 4,一共有20棵植物,在每棵植物上标明了能量汇集机器收集它的能量时产生的能量损失。 在这个例子中,总共产生了36的能量损失。
Input

仅包含一行,为两个整数n和m。
Output

仅包含一个整数,表示总共产生的能量损失。
Sample Input
【样例输入1】
5 4


【样例输入2】
3 4

Sample Output
【样例输出1】
36

【样例输出2】
20

【数据规模和约定】
对于10%的数据:1 ≤ n, m ≤ 10;

对于50%的数据:1 ≤ n, m ≤ 100;

对于80%的数据:1 ≤ n, m ≤ 1000;

对于90%的数据:1 ≤ n, m ≤ 10,000;

对于100%的数据:1 ≤ n, m ≤ 100,000。

 

囧,最后还是翻了题解

其实暴力算是nlogn的,我们算gcd=d的个数时,初始为(n/d)*(m/d),然后减去2*d,3*d,4*d....的

然后复杂度就是O(n/1+n/2+n/3+n/4+...+n/n),大概比nlogn还小一些

 1 const
 2     maxn=1000000;
 3 var
 4     f:array[0..maxn]of int64;
 5     n,m:longint;
 6     ans:int64;
 7  
 8 procedure main;
 9 var
10     i,j,t:longint;
11 begin
12     read(n,m);
13     if n>m then t:=m
14     else t:=n;
15     for i:=t downto 1 do
16         begin
17             f[i]:=trunc(n/i)*trunc(m/i);
18             j:=i*2;
19             while j<=t do
20                 begin
21                     dec(f[i],f[j]);
22                     inc(j,i);
23                 end;
24             inc(ans,f[i]*i);
25         end;
26     ans:=ans*2-int64(n)*m;
27     writeln(ans);
28 end;
29  
30 begin
31     main;
32 end.
View Code

 

转载于:https://www.cnblogs.com/Randolph87/p/3801359.html

发布了0 篇原创文章 · 获赞 15 · 访问量 5万+
展开阅读全文
评论将由博主筛选后显示,对所有人可见 | 还能输入1000个字符

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 编程工作室 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览