3732: Network
Description
给你N个点的无向图 (1 <= N <= 15,000),记为:1…N。
图中有M条边 (1 <= M <= 30,000) ,第j条边的长度为: d_j ( 1 < = d_j < = 1,000,000,000).
现在有 K个询问 (1 < = K < = 15,000)。
每个询问的格式是:A B,表示询问从A点走到B点的所有路径中,最长的边最小值是多少?
Input
第一行: N, M, K。
第2..M+1行: 三个正整数:X, Y, and D (1 <= X <=N; 1 <= Y <= N). 表示X与Y之间有一条长度为D的边。
第M+2..M+K+1行: 每行两个整数A B,表示询问从A点走到B点的所有路径中,最长的边最小值是多少?
Output
对每个询问,输出最长的边最小值是多少。
Sample Input
6 6 8
1 2 5
2 3 4
3 4 3
1 4 8
2 5 7
4 6 2
1 2
1 3
1 4
2 3
2 4
5 1
6 2
6 1
1 2 5
2 3 4
3 4 3
1 4 8
2 5 7
4 6 2
1 2
1 3
1 4
2 3
2 4
5 1
6 2
6 1
Sample Output
5
5
5
4
4
7
4
5
5
5
4
4
7
4
5
HINT
1 <= N <= 15,000
1 <= M <= 30,000
1 <= d_j <= 1,000,000,000
1 <= K <= 15,000
正式恭贺ACTYbzoj上刷题过40道!!!!
——————以下题解——————
最长边的最小值,貌似是二分答案???可是二分时间明显不够。。。
其实这题有一个性质,最长边的最小值就是将它MST后的路径的最大值。
证明我也不太会。。。。
然后就是裸的LCA,或是树链剖分。
#include<stdio.h> #include<iostream> #include<algorithm> using namespace std; const int N=15005; const int M=30005; struct node { int a,b,c; }p[M]; int n,m,T,i,j,k,x,y,fx,fy,f[N],dp[N][25],st[N][25],r[N]; int tot,head[N],Next[M<<1],v[M<<1],to[M<<1]; bool cmp(const node&x,const node&y) { return x.c<y.c; } int get(int x) { if(f[x]==x) return x;else return f[x]=get(f[x]); } void add(int x,int y,int z) { tot++; to[tot]=y; v[tot]=z; Next[tot]=head[x]; head[x]=tot; } void dfs(int x,int y) { for(int i=head[x];i!=-1;i=Next[i]) if(to[i]!=y) { dp[to[i]][0]=x; st[to[i]][0]=v[i]; r[to[i]]=r[x]+1; dfs(to[i],x); } } int LCA_max(int a,int b) { int i,ans=0; if(r[a]<r[b]) swap(a,b); for(i=20;i>=0;i--) if(dp[a][i]>0&&r[dp[a][i]]>=r[b]) { ans=max(ans,st[a][i]); a=dp[a][i]; } if(a==b) return ans; for(i=20;i>=0;i--) if(dp[a][i]>0&&dp[b][i]>0&&dp[a][i]!=dp[b][i]) { ans=max(ans,max(st[b][i],st[a][i])); a=dp[a][i]; b=dp[b][i]; } return max(ans,max(st[a][0],st[b][0])); } int main() { scanf("%d%d%d",&n,&m,&T); for(i=1;i<=m;i++) scanf("%d%d%d",&p[i].a,&p[i].b,&p[i].c); sort(p+1,p+m+1,cmp); tot=k=0; for(i=1;i<=n;i++) f[i]=i,head[i]=-1; for(i=1;i<=m;i++) { fx=get(p[i].a); fy=get(p[i].b); if(fx!=fy) { k++; f[fx]=fy; add(p[i].a,p[i].b,p[i].c); add(p[i].b,p[i].a,p[i].c); if(k==n-1) break; } } dfs(1,0); for(j=1;(1<<j)<=n;j++) for(i=1;i<=n;i++) { dp[i][j]=dp[dp[i][j-1]][j-1]; st[i][j]=max(st[dp[i][j-1]][j-1],st[i][j-1]); } while(T--) { scanf("%d%d",&x,&y); printf("%d\n",LCA_max(x,y)); } return 0; }