bzoj 3732: Network

3732: Network

Description

给你N个点的无向图 (1 <= N <= 15,000),记为:1…N。 
图中有M条边 (1 <= M <= 30,000) ,第j条边的长度为: d_j ( 1 < = d_j < = 1,000,000,000).

现在有 K个询问 (1 < = K < = 15,000)。 
每个询问的格式是:A B,表示询问从A点走到B点的所有路径中,最长的边最小值是多少?

Input

第一行: N, M, K。 
第2..M+1行: 三个正整数:X, Y, and D (1 <= X <=N; 1 <= Y <= N). 表示X与Y之间有一条长度为D的边。 
第M+2..M+K+1行: 每行两个整数A B,表示询问从A点走到B点的所有路径中,最长的边最小值是多少?

Output

 对每个询问,输出最长的边最小值是多少。

Sample Input

6 6 8
1 2 5
2 3 4
3 4 3
1 4 8
2 5 7
4 6 2
1 2
1 3
1 4
2 3
2 4
5 1
6 2
6 1

Sample Output

5
5
5
4
4
7
4
5

HINT

1 <= N <= 15,000 
1 <= M <= 30,000 
1 <= d_j <= 1,000,000,000 
1 <= K <= 15,000 

正式恭贺ACTYbzoj上刷题过40道!!!!

——————以下题解——————

最长边的最小值,貌似是二分答案???可是二分时间明显不够。。。

其实这题有一个性质,最长边的最小值就是将它MST后的路径的最大值。

证明我也不太会。。。。

然后就是裸的LCA,或是树链剖分。

#include<stdio.h>
#include<iostream>
#include<algorithm>
using namespace std;
const int N=15005;
const int M=30005;
struct node
{
    int a,b,c;
}p[M];
int n,m,T,i,j,k,x,y,fx,fy,f[N],dp[N][25],st[N][25],r[N];
int tot,head[N],Next[M<<1],v[M<<1],to[M<<1];
bool cmp(const node&x,const node&y)
{
    return x.c<y.c;
}
int get(int x)
{
    if(f[x]==x) return x;else return f[x]=get(f[x]);
}
void add(int x,int y,int z)
{
    tot++;
    to[tot]=y;
    v[tot]=z;
    Next[tot]=head[x];
    head[x]=tot;
}
void dfs(int x,int y)
{
    for(int i=head[x];i!=-1;i=Next[i])
     if(to[i]!=y)
    {
        dp[to[i]][0]=x;
        st[to[i]][0]=v[i];
        r[to[i]]=r[x]+1;
        dfs(to[i],x);
    }
}
int LCA_max(int a,int b)
{
    int i,ans=0;
    if(r[a]<r[b]) swap(a,b);
    for(i=20;i>=0;i--)
    if(dp[a][i]>0&&r[dp[a][i]]>=r[b])
    {
        ans=max(ans,st[a][i]);
        a=dp[a][i];
    }
    if(a==b) return ans;
    for(i=20;i>=0;i--)
    if(dp[a][i]>0&&dp[b][i]>0&&dp[a][i]!=dp[b][i])
    {
        ans=max(ans,max(st[b][i],st[a][i]));
        a=dp[a][i];
        b=dp[b][i];
    }
    return max(ans,max(st[a][0],st[b][0]));
}
int main()
{
    scanf("%d%d%d",&n,&m,&T);
    for(i=1;i<=m;i++)
        scanf("%d%d%d",&p[i].a,&p[i].b,&p[i].c);
    sort(p+1,p+m+1,cmp);
    tot=k=0;
    for(i=1;i<=n;i++) f[i]=i,head[i]=-1;
    for(i=1;i<=m;i++)
    {
        fx=get(p[i].a);
        fy=get(p[i].b);
        if(fx!=fy)
        {
            k++;
            f[fx]=fy;
            add(p[i].a,p[i].b,p[i].c);
            add(p[i].b,p[i].a,p[i].c);
            if(k==n-1) break;
        }
    }
    dfs(1,0);
    for(j=1;(1<<j)<=n;j++)
     for(i=1;i<=n;i++)
    {
        dp[i][j]=dp[dp[i][j-1]][j-1];
        st[i][j]=max(st[dp[i][j-1]][j-1],st[i][j-1]);
    }
    while(T--)
    {
        scanf("%d%d",&x,&y);
        printf("%d\n",LCA_max(x,y));
    }
    return 0;
}

 

转载于:https://www.cnblogs.com/lwq12138/p/5524695.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值