Co-Training vs Self-Training

本文介绍了半监督学习中的两种重要算法:self-training和co-training。self-training通过已标记数据训练初始模型,并以此模型预测未标记数据的标签,迭代更新直至所有数据被标记。co-training则适用于多视角学习场景,利用不同特征集分别训练多个分类器,各分类器间相互补充,共同提高预测准确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

首先,在实际做classification的场景中,经常会遇到只有少量的labeled data而更多的data都是unlabeled 的情况。co-training和self-training这两个算法即是用来解决这样情况的。

 

下面分别描述这两种算法:

1.Self-training:

用已有的Labled data先建立一个分类器,建好之后用它去estimate那些unlabeled的data.

之后,之前的labeled data加上新estimate出来的 “pseudo-labeled” unlabeled data一起,再train出来一个新的分类器。

重负上述步骤,直到所有unlabeled data都被归类进去。

2.Co-training:

used in special cases of the more general multi-view learning.

即当要training的数据,可以从不同的views来看待的时候。举个例子,在做网页分类(web-page classification)这个模型时候,feature的来源有两个部分,一是URL features of the websites 记为 A, 二是text features of the websites 记为 B.

co-training的算法是:

• Inputs: An initial collection of labeled documents and one of unlabeled documents.

• Loop while there exist documents without class labels:

        • Build classifier A using the A portion of each document.

        • Build classifier B using the B portion of each document.

        • For each class C, pick the unlabeled document about which classifier A is most confident that its class label is C and add it to the collection of labeled documents.

         • For each class C, pick the unlabeled document about which classifier B is most confident that its class label is C and add it to the collection of labeled documents.

          • Output: Two classifiers, A and B, that predict class labels for new documents. These predictions can be combined by multiplying together and then renormalizing their class probability scores.

即两组用features A,B分别做两个分类器,单独每个分类器里面用self-training的方法分别进行training的迭代(每次增加新的unlabeled数据),最后使用两个self-training结束的分类器,一起进行prediction.

其主要的思路是,对于那些可以feature可以天然split的数据,用每组feature做出不同的分类器,不同features做出来的分类器可以相互互补

 

最后总结:

co-training和self-training之前最直观的区别就是:在学习的过程中,前者有两个分类器(classifier),而后者仅有一个分类器。

 

转载于:https://www.cnblogs.com/xiaotu1617234/p/8273972.html

Co-training 是一种半监督学习方法,它可以利用未标记的数据来提高模型的性能。下面是一个 Python 实现的 Co-training 代码示例: ```python import numpy as np from sklearn.naive_bayes import MultinomialNB class CoTrainer: def __init__(self, clf1, clf2, n_iter=10): self.clf1 = clf1 self.clf2 = clf2 self.n_iter = n_iter def fit(self, X_unlabeled, y_unlabeled, X_labeled1, y_labeled1, X_labeled2, y_labeled2): for i in range(self.n_iter): # 训练第一个分类器 self.clf1.fit(X_labeled1, y_labeled1) # 使用第一个分类器预测未标记数据的标签 y_pred1 = self.clf1.predict(X_unlabeled) # 找出第一个分类器预测的置信度最高的样本 idx1 = np.argsort(-self.clf1.predict_proba(X_unlabeled), axis=1)[:,:1] # 将这些样本加入第一个标记集 X_labeled1 = np.vstack((X_labeled1, X_unlabeled[idx1])) y_labeled1 = np.hstack((y_labeled1, y_pred1[idx1])) # 从未标记集中删除这些样本 X_unlabeled = np.delete(X_unlabeled, idx1, axis=0) y_unlabeled = np.delete(y_unlabeled, idx1, axis=0) # 训练第二个分类器 self.clf2.fit(X_labeled2, y_labeled2) # 使用第二个分类器预测未标记数据的标签 y_pred2 = self.clf2.predict(X_unlabeled) # 找出第二个分类器预测的置信度最高的样本 idx2 = np.argsort(-self.clf2.predict_proba(X_unlabeled), axis=1)[:,:1] # 将这些样本加入第二个标记集 X_labeled2 = np.vstack((X_labeled2, X_unlabeled[idx2])) y_labeled2 = np.hstack((y_labeled2, y_pred2[idx2])) # 从未标记集中删除这些样本 X_unlabeled = np.delete(X_unlabeled, idx2, axis=0) y_unlabeled = np.delete(y_unlabeled, idx2, axis=0) # 在两个标记集上合并训练数据 X_train = np.vstack((X_labeled1, X_labeled2)) y_train = np.hstack((y_labeled1, y_labeled2)) # 使用合并后的训练集重新训练两个分类器 self.clf1.fit(X_train, y_train) self.clf2.fit(X_train, y_train) def predict(self, X): # 合并两个分类器的预测结果 y_pred1 = self.clf1.predict(X) y_pred2 = self.clf2.predict(X) return np.hstack((y_pred1.reshape(-1, 1), y_pred2.reshape(-1, 1))) ``` 这个 Co-training 的实现使用了朴素贝叶斯分类器作为基分类器,可以根据需要替换为其他分类器。在 `fit` 方法中,我们首先训练两个基分类器,然后将它们用于预测未标记数据的标签。接着,我们分别找出两个分类器预测置信度最高的样本,将它们加入两个标记集,并从未标记集中删除这些样本。这个过程重复进行多次,直到未标记集为空。最后,我们使用两个标记集合并后的训练数据重新训练两个分类器,并在预测时合并两个分类器的预测结果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值